1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High-resolution laser spectroscopy between 0.9 and 14.3 THz in a supersonic beam: Rydberg-Rydberg transitions of atomic Xe at intermediate n values
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/24/10.1063/1.4809740
1.
1. F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D. G. Paveljev, M. Winnewisser, and G. Winnewisser, IEEE Microw. Guid. Wave Lett. 9, 198 (1999).
http://dx.doi.org/10.1109/75.766763
2.
2. D. T. Petkie, Th. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, Rev. Sci. Instrum. 68, 1675 (1997).
http://dx.doi.org/10.1063/1.1147970
3.
3. R. Gendriesch, F. Lewen, G. Winnewisser, and J. Hahn, J. Mol. Spectrosc. 203, 205 (2000).
http://dx.doi.org/10.1006/jmsp.2000.8163
4.
4. F. Lewen, E. Michael, R. Gendriesch, J. Stutzki, and G. Winnewisser, J. Mol. Spectrosc. 183, 207 (1997).
http://dx.doi.org/10.1006/jmsp.1996.7244
5.
5. F. Lewen, R. Gendriesch, I. Pak, D. G. Paveliev, M. Hepp, R. Schieder, and G. Winnewisser, Rev. Sci. Instrum. 69, 32 (1998).
http://dx.doi.org/10.1063/1.1148475
6.
6. V. L. Vaks, A. N. Panin, S. A. Basov, A. V. Illyuk, S. I. Pripolzin, D. G. Peveliev, and Y. I. Koshurinov, Radiophys. Quantum Electron. 52, 511 (2009).
http://dx.doi.org/10.1007/s11141-009-9154-7
7.
7. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, Appl. Phys. B: Lasers Opt. 79, 725 (2004).
http://dx.doi.org/10.1007/s00340-004-1607-2
8.
8. E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, Appl. Phys. Lett. 81, 1174 (2002).
http://dx.doi.org/10.1063/1.1499517
9.
9. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009), p. 126.
10.
10. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, Laser Photon. Rev. 3, 45 (2009).
http://dx.doi.org/10.1002/lpor.200810030
11.
11. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, Nat. Commun. 3, 1040 (2012).
http://dx.doi.org/10.1038/ncomms2048
12.
12. A. R. W. McKellar, J. Mol. Spectrosc. 262, 1 (2010).
http://dx.doi.org/10.1016/j.jms.2010.04.006
13.
13. S. Albert, K. K. Albert, P. Lerch, and M. Quack, Faraday Discuss. 150, 71 (2011).
http://dx.doi.org/10.1039/c0fd00013b
14.
14. S. Albert, P. Lerch, R. Prentner, and M. Quack, Angew. Chem., Int. Ed. Engl. 52, 346 (2013).
http://dx.doi.org/10.1002/anie.201205990
15.
15. P. Fellgett, J. Phys. Radium 19, 187 (1958).
http://dx.doi.org/10.1051/jphysrad:01958001903018700
16.
16. J. Liu, H. Schmutz, and F. Merkt, J. Mol. Spectrosc. 256, 111 (2009).
http://dx.doi.org/10.1016/j.jms.2009.02.022
17.
17. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, J. Opt. Soc. Am. B 23, 1822 (2006).
http://dx.doi.org/10.1364/JOSAB.23.001822
18.
18. J. Liu and F. Merkt, Appl. Phys. Lett. 93, 131105 (2008).
http://dx.doi.org/10.1063/1.2977490
19.
19. M. Schäfer and F. Merkt, Phys. Rev. A 74, 062506 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.062506
20.
20. M. Schäfer, M. Raunhardt, and F. Merkt, Phys. Rev. A 81, 032514 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.032514
21.
21. A. Osterwalder, A. Wüest, F. Merkt, and Ch. Jungen, J. Chem. Phys. 121, 11810 (2004).
http://dx.doi.org/10.1063/1.1792596
22.
22. H. J. Wörner, M. Grütter, E. Vliegen, and F. Merkt, Phys. Rev. A 71, 052504 (2005);
http://dx.doi.org/10.1103/PhysRevA.71.052504
22.H. J. Wörner, M. Grütter, E. Vliegen, and F. Merkt, Phys. Rev. A 73, 059904E (2006) (Erratum).
http://dx.doi.org/10.1103/PhysRevA.73.059904
23.
23. H. J. Wörner, S. Mollet, Ch. Jungen, and F. Merkt, Phys. Rev. A 75, 062511 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.062511
24.
24. F. Merkt, A. Osterwalder, R. Seiler, R. Signorell, H. Palm, H. Schmutz, and R. Gunzinger, J. Phys. B: At. Mol. Opt. Phys. 31, 1705 (1998).
http://dx.doi.org/10.1088/0953-4075/31/8/020
25.
25. R. Seiler, Th. Paul, M. Andrist, and F. Merkt, Rev. Sci. Instrum. 76, 103103 (2005).
http://dx.doi.org/10.1063/1.2081891
26.
26. IodineSpec, simulation software, Toptica GmbH, 2008.
27.
27. J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009).
http://dx.doi.org/10.1063/1.3120443
28.
28. R. L. Aggarwal and B. Lax, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer, New York, 1977).
29.
29. See supplementary material at http://dx.doi.org/10.1063/1.4809740 for a list of all measured transition frequencies. [Supplementary Material]
30.
30. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994).
31.
31. C. Haase, M. Schäfer, and F. Merkt, “The s/d interaction in Rydberg states of Xe from their hyperfine structure” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/24/10.1063/1.4809740
Loading
/content/aip/journal/jcp/138/24/10.1063/1.4809740
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/24/10.1063/1.4809740
2013-06-26
2014-07-12

Abstract

A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal -4-(dimethylamino)--methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet–submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated in a study of 33 Rydberg-Rydberg transitions in Xe with in the range 16–31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of ∼3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of Xe and Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/24/1.4809740.html;jsessionid=2li92txxp2g19.x-aip-live-06?itemId=/content/aip/journal/jcp/138/24/10.1063/1.4809740&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-resolution laser spectroscopy between 0.9 and 14.3 THz in a supersonic beam: Rydberg-Rydberg transitions of atomic Xe at intermediate n values
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/24/10.1063/1.4809740
10.1063/1.4809740
SEARCH_EXPAND_ITEM