1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High-resolution laser spectroscopy between 0.9 and 14.3 THz in a supersonic beam: Rydberg-Rydberg transitions of atomic Xe at intermediate n values
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/24/10.1063/1.4809740
1.
1. F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D. G. Paveljev, M. Winnewisser, and G. Winnewisser, IEEE Microw. Guid. Wave Lett. 9, 198 (1999).
http://dx.doi.org/10.1109/75.766763
2.
2. D. T. Petkie, Th. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, Rev. Sci. Instrum. 68, 1675 (1997).
http://dx.doi.org/10.1063/1.1147970
3.
3. R. Gendriesch, F. Lewen, G. Winnewisser, and J. Hahn, J. Mol. Spectrosc. 203, 205 (2000).
http://dx.doi.org/10.1006/jmsp.2000.8163
4.
4. F. Lewen, E. Michael, R. Gendriesch, J. Stutzki, and G. Winnewisser, J. Mol. Spectrosc. 183, 207 (1997).
http://dx.doi.org/10.1006/jmsp.1996.7244
5.
5. F. Lewen, R. Gendriesch, I. Pak, D. G. Paveliev, M. Hepp, R. Schieder, and G. Winnewisser, Rev. Sci. Instrum. 69, 32 (1998).
http://dx.doi.org/10.1063/1.1148475
6.
6. V. L. Vaks, A. N. Panin, S. A. Basov, A. V. Illyuk, S. I. Pripolzin, D. G. Peveliev, and Y. I. Koshurinov, Radiophys. Quantum Electron. 52, 511 (2009).
http://dx.doi.org/10.1007/s11141-009-9154-7
7.
7. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, Appl. Phys. B: Lasers Opt. 79, 725 (2004).
http://dx.doi.org/10.1007/s00340-004-1607-2
8.
8. E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, Appl. Phys. Lett. 81, 1174 (2002).
http://dx.doi.org/10.1063/1.1499517
9.
9. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009), p. 126.
10.
10. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, Laser Photon. Rev. 3, 45 (2009).
http://dx.doi.org/10.1002/lpor.200810030
11.
11. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, Nat. Commun. 3, 1040 (2012).
http://dx.doi.org/10.1038/ncomms2048
12.
12. A. R. W. McKellar, J. Mol. Spectrosc. 262, 1 (2010).
http://dx.doi.org/10.1016/j.jms.2010.04.006
13.
13. S. Albert, K. K. Albert, P. Lerch, and M. Quack, Faraday Discuss. 150, 71 (2011).
http://dx.doi.org/10.1039/c0fd00013b
14.
14. S. Albert, P. Lerch, R. Prentner, and M. Quack, Angew. Chem., Int. Ed. Engl. 52, 346 (2013).
http://dx.doi.org/10.1002/anie.201205990
15.
15. P. Fellgett, J. Phys. Radium 19, 187 (1958).
http://dx.doi.org/10.1051/jphysrad:01958001903018700
16.
16. J. Liu, H. Schmutz, and F. Merkt, J. Mol. Spectrosc. 256, 111 (2009).
http://dx.doi.org/10.1016/j.jms.2009.02.022
17.
17. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, J. Opt. Soc. Am. B 23, 1822 (2006).
http://dx.doi.org/10.1364/JOSAB.23.001822
18.
18. J. Liu and F. Merkt, Appl. Phys. Lett. 93, 131105 (2008).
http://dx.doi.org/10.1063/1.2977490
19.
19. M. Schäfer and F. Merkt, Phys. Rev. A 74, 062506 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.062506
20.
20. M. Schäfer, M. Raunhardt, and F. Merkt, Phys. Rev. A 81, 032514 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.032514
21.
21. A. Osterwalder, A. Wüest, F. Merkt, and Ch. Jungen, J. Chem. Phys. 121, 11810 (2004).
http://dx.doi.org/10.1063/1.1792596
22.
22. H. J. Wörner, M. Grütter, E. Vliegen, and F. Merkt, Phys. Rev. A 71, 052504 (2005);
http://dx.doi.org/10.1103/PhysRevA.71.052504
22.H. J. Wörner, M. Grütter, E. Vliegen, and F. Merkt, Phys. Rev. A 73, 059904E (2006) (Erratum).
http://dx.doi.org/10.1103/PhysRevA.73.059904
23.
23. H. J. Wörner, S. Mollet, Ch. Jungen, and F. Merkt, Phys. Rev. A 75, 062511 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.062511
24.
24. F. Merkt, A. Osterwalder, R. Seiler, R. Signorell, H. Palm, H. Schmutz, and R. Gunzinger, J. Phys. B: At. Mol. Opt. Phys. 31, 1705 (1998).
http://dx.doi.org/10.1088/0953-4075/31/8/020
25.
25. R. Seiler, Th. Paul, M. Andrist, and F. Merkt, Rev. Sci. Instrum. 76, 103103 (2005).
http://dx.doi.org/10.1063/1.2081891
26.
26. IodineSpec, simulation software, Toptica GmbH, 2008.
27.
27. J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009).
http://dx.doi.org/10.1063/1.3120443
28.
28. R. L. Aggarwal and B. Lax, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer, New York, 1977).
29.
29. See supplementary material at http://dx.doi.org/10.1063/1.4809740 for a list of all measured transition frequencies. [Supplementary Material]
30.
30. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994).
31.
31. C. Haase, M. Schäfer, and F. Merkt, “The s/d interaction in Rydberg states of Xe from their hyperfine structure” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/24/10.1063/1.4809740
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Excitation scheme used to measure spectra of 33 Rydberg-Rydberg transitions of Xe. The transitions were detected by selective field ionization of the final 33 level. The figure illustrates the range of initial states corresponding to the frequency range from 0.9 THz ( = 31) to 14.3 THz ( = 16).

Image of FIG. 2.

Click to view

FIG. 2.

Schematic optical layout of the spectrometer used to record VUV-THz double-resonance spectra. AOM: acousto-optical modulator; FR: Fresnel rhomb; PBS: polarization beamsplitter; OF: optical fiber; OI: optical isolator; DAST: -4-(dimethylamino)--methyl-4-stilbazolium tosylate crystal; OAPM: off-axis parabolic mirror; and PE: polyethylene window.

Image of FIG. 3.

Click to view

FIG. 3.

Spectrometer used to record VUV-THz double-resonance spectra of Xe in a supersonic expansion. A: entrance window for NIR radiation; B: screw for lateral displacement of the DAST crystal; C and D: screws for adjusting the orientation of the DAST crystal; and E and F: screws to adjust the tilt angles of the off-axis parabolic mirror (see text for details). TOF: time-of flight.

Image of FIG. 4.

Click to view

FIG. 4.

Spectrum of the 33[5/2] ← 17[3/2] transition of Xe plotted as a function of the wave number of the tunable NIR laser (a) and as a function of the difference of the wave numbers of the tunable and fixed-frequency NIR lasers (b). The top and middle traces in (a) represent the Doppler-free absorption spectrum of I and the transmission spectrum through an etalon, respectively. The asterisks designate transitions of Xe and Xe.

Image of FIG. 5.

Click to view

FIG. 5.

Spectra of the 33 ← 31 transition of Xe recorded using pulse lengths of (a) 400 ns, (b) 200 ns, (c) 60 ns, (d) 20 ns, and (e) 10 ns. The assignments of the lines labeled 1–8 are given in Table I . The spectra have been shifted along the vertical axis for clarity.

Image of FIG. 6.

Click to view

FIG. 6.

Effect of the NIR pulse length on the spectral resolution with the example of the 33[3/2] ← 31[3/2] transition of the = 0 isotopes of Xe. (a) and (b) display two measured NIR pulse shapes and (c) and (d) the corresponding spectral lineshapes.

Image of FIG. 7.

Click to view

FIG. 7.

Fine and hyperfine structure of the 33 transitions of Xe for = 31 (a), 21 (b), 18 (c), 17 (d), and 16 (e). The assignments of the lines labeled 1–8 are given in Table I . Lines 9 and 10 correspond to the 33[3/2](5/2) ← 21[3/2](5/2) transitions of Xe and 33[3/2](3/2) ← 21[3/2](1/2) of Xe, respectively.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Time-of-flight (TOF) spectrum of Xe ions formed following photoionization above the SP ionization threshold. Spectra of the 33 ← 31 transitions of Xe (b), Xe (c), and Xe (d) recorded following selective field ionization of the 33 level and measuring the ion signal at the relevant TOF position.

Tables

Generic image for table

Click to view

Table I.

Assignments and relative positions (in cm) of the fine and hyperfine-structure components of the 33 ← 31 transitions observed in Fig. 5 .

Generic image for table

Click to view

Table II.

Comparison of the NIR laser pulses with the measured (expt.) full widths at half-maximum (FWHM) of the Rydberg-Rydberg transitions. The calculated (calc.) widths were determined by convolution and Fourier-transformation assuming a Gaussian temporal profile of the NIR pulses.

Generic image for table

Click to view

Table III.

Observed and calculated frequencies of the 33[3/2][3/2] and 33[5/2][3/2] transitions for n = 16, 17, 18, 21, 29, 30, and 31. The calculated frequencies were obtained using the set of MQDT parameters reported in Ref. .

Loading

Article metrics loading...

/content/aip/journal/jcp/138/24/10.1063/1.4809740
2013-06-26
2014-04-20

Abstract

A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal -4-(dimethylamino)--methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet–submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated in a study of 33 Rydberg-Rydberg transitions in Xe with in the range 16–31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of ∼3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of Xe and Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/24/1.4809740.html;jsessionid=1dqb469eeg2vk.x-aip-live-01?itemId=/content/aip/journal/jcp/138/24/10.1063/1.4809740&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-resolution laser spectroscopy between 0.9 and 14.3 THz in a supersonic beam: Rydberg-Rydberg transitions of atomic Xe at intermediate n values
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/24/10.1063/1.4809740
10.1063/1.4809740
SEARCH_EXPAND_ITEM