Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D. G. Paveljev, M. Winnewisser, and G. Winnewisser, IEEE Microw. Guid. Wave Lett. 9, 198 (1999).
2. D. T. Petkie, Th. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, Rev. Sci. Instrum. 68, 1675 (1997).
3. R. Gendriesch, F. Lewen, G. Winnewisser, and J. Hahn, J. Mol. Spectrosc. 203, 205 (2000).
4. F. Lewen, E. Michael, R. Gendriesch, J. Stutzki, and G. Winnewisser, J. Mol. Spectrosc. 183, 207 (1997).
5. F. Lewen, R. Gendriesch, I. Pak, D. G. Paveliev, M. Hepp, R. Schieder, and G. Winnewisser, Rev. Sci. Instrum. 69, 32 (1998).
6. V. L. Vaks, A. N. Panin, S. A. Basov, A. V. Illyuk, S. I. Pripolzin, D. G. Peveliev, and Y. I. Koshurinov, Radiophys. Quantum Electron. 52, 511 (2009).
7. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, Appl. Phys. B: Lasers Opt. 79, 725 (2004).
8. E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, Appl. Phys. Lett. 81, 1174 (2002).
9. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009), p. 126.
10. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, Laser Photon. Rev. 3, 45 (2009).
11. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, Nat. Commun. 3, 1040 (2012).
12. A. R. W. McKellar, J. Mol. Spectrosc. 262, 1 (2010).
13. S. Albert, K. K. Albert, P. Lerch, and M. Quack, Faraday Discuss. 150, 71 (2011).
14. S. Albert, P. Lerch, R. Prentner, and M. Quack, Angew. Chem., Int. Ed. Engl. 52, 346 (2013).
15. P. Fellgett, J. Phys. Radium 19, 187 (1958).
16. J. Liu, H. Schmutz, and F. Merkt, J. Mol. Spectrosc. 256, 111 (2009).
17. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, J. Opt. Soc. Am. B 23, 1822 (2006).
18. J. Liu and F. Merkt, Appl. Phys. Lett. 93, 131105 (2008).
19. M. Schäfer and F. Merkt, Phys. Rev. A 74, 062506 (2006).
20. M. Schäfer, M. Raunhardt, and F. Merkt, Phys. Rev. A 81, 032514 (2010).
21. A. Osterwalder, A. Wüest, F. Merkt, and Ch. Jungen, J. Chem. Phys. 121, 11810 (2004).
22. H. J. Wörner, M. Grütter, E. Vliegen, and F. Merkt, Phys. Rev. A 71, 052504 (2005);
22.H. J. Wörner, M. Grütter, E. Vliegen, and F. Merkt, Phys. Rev. A 73, 059904E (2006) (Erratum).
23. H. J. Wörner, S. Mollet, Ch. Jungen, and F. Merkt, Phys. Rev. A 75, 062511 (2007).
24. F. Merkt, A. Osterwalder, R. Seiler, R. Signorell, H. Palm, H. Schmutz, and R. Gunzinger, J. Phys. B: At. Mol. Opt. Phys. 31, 1705 (1998).
25. R. Seiler, Th. Paul, M. Andrist, and F. Merkt, Rev. Sci. Instrum. 76, 103103 (2005).
26. IodineSpec, simulation software, Toptica GmbH, 2008.
27. J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009).
28. R. L. Aggarwal and B. Lax, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer, New York, 1977).
29. See supplementary material at for a list of all measured transition frequencies. [Supplementary Material]
30. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994).
31. C. Haase, M. Schäfer, and F. Merkt, “The s/d interaction in Rydberg states of Xe from their hyperfine structure” (unpublished).

Data & Media loading...


Article metrics loading...



A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal -4-(dimethylamino)--methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet–submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated in a study of 33 Rydberg-Rydberg transitions in Xe with in the range 16–31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of ∼3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of Xe and Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd