1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/24/10.1063/1.4810865
1.
1. R. Criegee, Angew. Chem. Int. Ed. Engl. 14, 745 (1975).
http://dx.doi.org/10.1002/anie.197507451
2.
2. B. J. Finlayson-Pitts and J. N. Pitts Chemistry of the Upper and Lower Atmosphere (Academic Press, San Diego, 2000).
3.
3. D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
http://dx.doi.org/10.1039/b704260b
4.
4. N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys. 13, 10848 (2011).
http://dx.doi.org/10.1039/c0cp02564j
5.
5. S. D. Piccot, J. J. Watson, and J. W. Jones, J. Geophys. Res., [Atmos.] 97, 9897, doi: 10.1029/92JD00682 (1992).
http://dx.doi.org/10.1029/92JD00682
6.
6. A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, J. Geophys. Res., [Atmos.] 100, 8873, doi: 10.1029/94JD02950 (1995).
http://dx.doi.org/10.1029/94JD02950
7.
7. J. P. Greenberg, A. Guenther, P. Harley, L. Otter, E. M. Veenendaal, C. N. Hewitt, A. E. James, and S. M. Owen, J. Geophys. Res., [Atmos.] 108, 8466, doi: 10.1029/2002JD002317 (2003).
http://dx.doi.org/10.1029/2002JD002317
8.
8. S. E. Paulson, M. Y. Chung, and A. S. Hasson, J. Phys. Chem. A 103, 8125 (1999).
http://dx.doi.org/10.1021/jp991995e
9.
9. H. E. Jeffries, Composition, Chemistry and Climate of the Atmosphere (VNR, New York, 1995).
10.
10. J. M. Anglada, J. Gonzalez, and M. Torrent-Sucarrat, Phys. Chem. Chem. Phys. 13, 13034 (2011).
http://dx.doi.org/10.1039/c1cp20872a
11.
11. A. S. Hasson, M. Y. Chung, K. T. Kuwata, A. D. Converse, D. Krohn, and S. E. Paulson, J. Phys. Chem. A 107, 6176 (2003).
http://dx.doi.org/10.1021/jp0346007
12.
12. R. Crehuet, J. M. Anglada, and J. M. Bofill, Chem.-Eur. J. 7, 2227 (2001).
http://dx.doi.org/10.1002/1521-3765(20010518)7:10<2227::AID-CHEM2227>3.0.CO;2-O
13.
13. J. M. Anglada, P. Aplincourt, J. M. Bofill, and D. Cremer, ChemPhysChem 3, 215 (2002).
http://dx.doi.org/10.1002/1439-7641(20020215)3:2<215::AID-CPHC215>3.0.CO;2-3
14.
14. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
http://dx.doi.org/10.1126/science.1234689
15.
15. J. H. Kroll, N. M. Donahue, V. J. Cee, K. L. Demerjian, and J. G. Anderson, J. Am. Chem. Soc. 124, 8518 (2002).
http://dx.doi.org/10.1021/ja0266060
16.
16. J. M. Anglada, J. M. Bofill, S. Olivella, and A. Solé, J. Am. Chem. Soc. 118, 4636 (1996).
http://dx.doi.org/10.1021/ja953858a
17.
17. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
http://dx.doi.org/10.1021/ja310603j
18.
18. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
http://dx.doi.org/10.1126/science.1213229
19.
19. Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
http://dx.doi.org/10.1126/science.1234369
20.
20. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 14, 10391 (2012).
http://dx.doi.org/10.1039/c2cp40294g
21.
21. J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A 105, 1554 (2001).
http://dx.doi.org/10.1021/jp002121r
22.
22. J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A 105, 4446 (2001).
http://dx.doi.org/10.1021/jp004136v
23.
23. R. L. Mauldin III, T. Berndt, M. Sipila, P. Paasonen, T. Petaja, S. Kim, T. Kurten, F. Stratmann, V. M. Kerminen, and M. Kulmala, Nature 488, 193 (2012).
http://dx.doi.org/10.1038/nature11278
24.
24. O. Horie and G. K. Moortgat, Atmos. Environ. 25, 1881 (1991).
http://dx.doi.org/10.1016/0960-1686(91)90271-8
25.
25. R. Atkinson and S. M. Aschmann, Environ. Sci. Technol. 27, 1357 (1993).
http://dx.doi.org/10.1021/es00044a010
26.
26. T. J. Gravestock, M. A. Blitz, W. J. Bloss, and D. E. Heard, ChemPhysChem 11, 3928 (2010).
http://dx.doi.org/10.1002/cphc.201000575
27.
27. S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).
http://dx.doi.org/10.1063/1.439111
28.
28. E. P. F. Lee, D. K. W. Mok, D. E. Shallcross, C. J. Percival, D. L. Osborn, C. A. Taatjes, and J. M. Dyke, Chem.-Eur. J. 18, 12411 (2012).
http://dx.doi.org/10.1002/chem.201200848
29.
29. Y. Matsumi and M. Kawasaki, Chem. Rev. 103, 4767 (2003).
http://dx.doi.org/10.1021/cr0205255
30.
30. R. Schinke and G. C. McBane, J. Chem. Phys. 132, 044305 (2010).
http://dx.doi.org/10.1063/1.3299249
31.
31. M. T. Nguyen, T. L. Nguyen, V. T. Ngan and H. M. T. Nguyen, Chem. Phys. Lett. 448, 183 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.10.033
32.
32. J. M. Beames, F. Liu, M. I. Lester, and C. Murray, J. Chem. Phys. 134, 241102 (2011).
http://dx.doi.org/10.1063/1.3608061
33.
33. W. Sander, Angew. Chem. Int. Ed. Engl. 29, 344 (1990).
http://dx.doi.org/10.1002/anie.199003441
34.
34. P. Aplincourt, E. Henon, F. Bohr, and M. F. Ruiz-Lopez, Chem. Phys. 285, 221 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00804-2
35.
35. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
36.
36. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2004.
37.
37. D. Cremer, J. Gauss, E. Kraka, J. F. Stanton, and R. J. Bartlett, Chem. Phys. Lett. 209, 547 (1993).
http://dx.doi.org/10.1016/0009-2614(93)80131-8
38.
38. K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A 114, 9192 (2010).
http://dx.doi.org/10.1021/jp105358v
39.
39. R. Gutbrod, E. Kraka, R. N. Schindler, and D. Cremer, J. Am. Chem. Soc. 119, 7330 (1997).
http://dx.doi.org/10.1021/ja970050c
40.
40. D. Cremer, J. Am. Chem. Soc. 101, 7199 (1979).
http://dx.doi.org/10.1021/ja00518a013
41.
41. W. R. Wadt, and W. A. Goddard, J. Am. Chem. Soc. 97, 3004 (1975).
http://dx.doi.org/10.1021/ja00844a016
42.
42. J. C. Traeger, R. G. McLoughlin, and A. J. C. Nicholson, J. Am. Chem. Soc. 104, 5318 (1982).
http://dx.doi.org/10.1021/ja00384a010
43.
43.U.S. Environmental Protection Agency, Air Quality Trends, 2012, see http://www.epa.gov/airtrends/.
44.
44. D. Mihelcic, M. Heitlinger, D. Kley, P. Müsgen, and A. Volz-Thomas, Chem. Phys. Lett. 301, 559 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00057-3
45.
45.IUPAC Subcommittee on Gas Kinetic Data Evaluation, Data Sheet Ox_VOC3, 2005, see http://www.iupac-kinetic.ch.cam.ac.uk/datasheets/pdf/Ox_VOC3_O3_alkene.pdf.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/24/10.1063/1.4810865
Loading
/content/aip/journal/jcp/138/24/10.1063/1.4810865
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/24/10.1063/1.4810865
2013-06-27
2014-07-25

Abstract

Ozonolysis of alkenes in the troposphere proceeds through a Criegee intermediate, or carbonyl oxide, which has only recently been detected in the gas phase. The present study focuses on the production of an alkyl-substituted Criegee intermediate, CHCHOO, in a pulsed supersonic expansion, and then utilizes VUV photoionization at 118 nm and UV-induced depletion of the m/z = 60 signal to probe the A A transition. The UV-induced depletion approaches 100% near the peak of the profile at 320 nm, indicating rapid dynamics in the state, and corresponds to a peak absorption cross section of ∼5 × 10 cm molecule. The electronic spectrum for CHCHOO is similar to that reported recently for CHOO, but shifted 15 nm to shorter wavelength, which will result in a longer tropospheric lifetime for CHCHOO with respect to solar photolysis. Complementary electronic structure calculations (EOM-CCSD) are carried out for the and potentials of these Criegee intermediates along the O–O coordinate. An intramolecular interaction stabilizes the ground state of the -conformer of CHCHOO relative to -CHCHOO, and indicates that the -conformer will be the more abundant species in the expansion. The excited electronic state of -CHCHOO is also predicted to be destabilized relative to that for -CHCHOO and CHOO, in accord with the shift in the - transition observed experimentally. Hydroxyl radicals produced concurrently with the generation of the Criegee intermediates are detected by 1+1 resonance enhanced multiphoton ionization. The OH yield observed with CHCHOO is 4-fold larger than that from CHOO, consistent with prior studies of OH generation from alkene ozonolysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/24/1.4810865.html;jsessionid=sybjrovoqqsz.x-aip-live-03?itemId=/content/aip/journal/jcp/138/24/10.1063/1.4810865&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/24/10.1063/1.4810865
10.1063/1.4810865
SEARCH_EXPAND_ITEM