Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Criegee, Angew. Chem. Int. Ed. Engl. 14, 745 (1975).
2. B. J. Finlayson-Pitts and J. N. Pitts Chemistry of the Upper and Lower Atmosphere (Academic Press, San Diego, 2000).
3. D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
4. N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys. 13, 10848 (2011).
5. S. D. Piccot, J. J. Watson, and J. W. Jones, J. Geophys. Res., [Atmos.] 97, 9897, doi: 10.1029/92JD00682 (1992).
6. A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, J. Geophys. Res., [Atmos.] 100, 8873, doi: 10.1029/94JD02950 (1995).
7. J. P. Greenberg, A. Guenther, P. Harley, L. Otter, E. M. Veenendaal, C. N. Hewitt, A. E. James, and S. M. Owen, J. Geophys. Res., [Atmos.] 108, 8466, doi: 10.1029/2002JD002317 (2003).
8. S. E. Paulson, M. Y. Chung, and A. S. Hasson, J. Phys. Chem. A 103, 8125 (1999).
9. H. E. Jeffries, Composition, Chemistry and Climate of the Atmosphere (VNR, New York, 1995).
10. J. M. Anglada, J. Gonzalez, and M. Torrent-Sucarrat, Phys. Chem. Chem. Phys. 13, 13034 (2011).
11. A. S. Hasson, M. Y. Chung, K. T. Kuwata, A. D. Converse, D. Krohn, and S. E. Paulson, J. Phys. Chem. A 107, 6176 (2003).
12. R. Crehuet, J. M. Anglada, and J. M. Bofill, Chem.-Eur. J. 7, 2227 (2001).<2227::AID-CHEM2227>3.0.CO;2-O
13. J. M. Anglada, P. Aplincourt, J. M. Bofill, and D. Cremer, ChemPhysChem 3, 215 (2002).<215::AID-CPHC215>3.0.CO;2-3
14. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
15. J. H. Kroll, N. M. Donahue, V. J. Cee, K. L. Demerjian, and J. G. Anderson, J. Am. Chem. Soc. 124, 8518 (2002).
16. J. M. Anglada, J. M. Bofill, S. Olivella, and A. Solé, J. Am. Chem. Soc. 118, 4636 (1996).
17. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
18. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
19. Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
20. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 14, 10391 (2012).
21. J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A 105, 1554 (2001).
22. J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A 105, 4446 (2001).
23. R. L. Mauldin III, T. Berndt, M. Sipila, P. Paasonen, T. Petaja, S. Kim, T. Kurten, F. Stratmann, V. M. Kerminen, and M. Kulmala, Nature 488, 193 (2012).
24. O. Horie and G. K. Moortgat, Atmos. Environ. 25, 1881 (1991).
25. R. Atkinson and S. M. Aschmann, Environ. Sci. Technol. 27, 1357 (1993).
26. T. J. Gravestock, M. A. Blitz, W. J. Bloss, and D. E. Heard, ChemPhysChem 11, 3928 (2010).
27. S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).
28. E. P. F. Lee, D. K. W. Mok, D. E. Shallcross, C. J. Percival, D. L. Osborn, C. A. Taatjes, and J. M. Dyke, Chem.-Eur. J. 18, 12411 (2012).
29. Y. Matsumi and M. Kawasaki, Chem. Rev. 103, 4767 (2003).
30. R. Schinke and G. C. McBane, J. Chem. Phys. 132, 044305 (2010).
31. M. T. Nguyen, T. L. Nguyen, V. T. Ngan and H. M. T. Nguyen, Chem. Phys. Lett. 448, 183 (2007).
32. J. M. Beames, F. Liu, M. I. Lester, and C. Murray, J. Chem. Phys. 134, 241102 (2011).
33. W. Sander, Angew. Chem. Int. Ed. Engl. 29, 344 (1990).
34. P. Aplincourt, E. Henon, F. Bohr, and M. F. Ruiz-Lopez, Chem. Phys. 285, 221 (2002).
35. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
36. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2004.
37. D. Cremer, J. Gauss, E. Kraka, J. F. Stanton, and R. J. Bartlett, Chem. Phys. Lett. 209, 547 (1993).
38. K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A 114, 9192 (2010).
39. R. Gutbrod, E. Kraka, R. N. Schindler, and D. Cremer, J. Am. Chem. Soc. 119, 7330 (1997).
40. D. Cremer, J. Am. Chem. Soc. 101, 7199 (1979).
41. W. R. Wadt, and W. A. Goddard, J. Am. Chem. Soc. 97, 3004 (1975).
42. J. C. Traeger, R. G. McLoughlin, and A. J. C. Nicholson, J. Am. Chem. Soc. 104, 5318 (1982).
43.U.S. Environmental Protection Agency, Air Quality Trends, 2012, see
44. D. Mihelcic, M. Heitlinger, D. Kley, P. Müsgen, and A. Volz-Thomas, Chem. Phys. Lett. 301, 559 (1999).
45.IUPAC Subcommittee on Gas Kinetic Data Evaluation, Data Sheet Ox_VOC3, 2005, see

Data & Media loading...


Article metrics loading...



Ozonolysis of alkenes in the troposphere proceeds through a Criegee intermediate, or carbonyl oxide, which has only recently been detected in the gas phase. The present study focuses on the production of an alkyl-substituted Criegee intermediate, CHCHOO, in a pulsed supersonic expansion, and then utilizes VUV photoionization at 118 nm and UV-induced depletion of the m/z = 60 signal to probe the A A transition. The UV-induced depletion approaches 100% near the peak of the profile at 320 nm, indicating rapid dynamics in the state, and corresponds to a peak absorption cross section of ∼5 × 10 cm molecule. The electronic spectrum for CHCHOO is similar to that reported recently for CHOO, but shifted 15 nm to shorter wavelength, which will result in a longer tropospheric lifetime for CHCHOO with respect to solar photolysis. Complementary electronic structure calculations (EOM-CCSD) are carried out for the and potentials of these Criegee intermediates along the O–O coordinate. An intramolecular interaction stabilizes the ground state of the -conformer of CHCHOO relative to -CHCHOO, and indicates that the -conformer will be the more abundant species in the expansion. The excited electronic state of -CHCHOO is also predicted to be destabilized relative to that for -CHCHOO and CHOO, in accord with the shift in the - transition observed experimentally. Hydroxyl radicals produced concurrently with the generation of the Criegee intermediates are detected by 1+1 resonance enhanced multiphoton ionization. The OH yield observed with CHCHOO is 4-fold larger than that from CHOO, consistent with prior studies of OH generation from alkene ozonolysis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd