Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Kohn and L. J. Sham, Phys. Rev. 140(4A), A1133 (1965).
2. J. P. Perdew, Phys. Rev. Lett. 55(16), 1665 (1985).
3. F. Bechstedt and R. Delsole, Phys. Rev. B 38(11), 7710 (1988).
4. D. D. Koelling, Rep. Prog. Phys. 44(2), 139 (1981).
5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
6. J.-W. Song, K. Yamashita, and K. Hirao, J. Chem. Phys. 135(7), 071103 (2011).
7. R. Peverati and D. G. Truhlar, J. Chem. Phys. 136(13), 134704 (2012).
8. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003).
9. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124(21), 219906E (2006).
10. J. Heyd and G. E. Scuseria, J. Chem. Phys. 120(16), 7274 (2004).
11. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123(17), 174101 (2005).
12. B. G. Janesko, T. M. Henderson, and G. E. Scuseria, Phys. Chem. Chem. Phys. 11(3), 443 (2009).
13. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, J. Chem. Phys. 124(15), 154709 (2006).
14. R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14(47), 16187 (2012).
15. S. Chawla and G. A. Voth, J. Chem. Phys. 108(12), 4697 (1998).
16. A. Sorouri, W. M. C. Foulkes, and N. D. M. Hine, J. Chem. Phys. 124(6), 064105 (2006).
17. P. Carrier, S. Rohra, and A. Gorling, Phys. Rev. B 75(20), 205126 (2007).
18. J. Spencer and A. Alavi, Phys. Rev. B 77(19), 193110 (2008).
19. P. Broqvist, A. Alkauskas, and A. Pasquarello, Phys. Rev. B 80(8), 085114 (2009).
20. H. V. Nguyen and S. de Gironcoli, Phys. Rev. B 79(20), 205114 (2009).
21. F. Gygi and A. Baldereschi, Phys. Rev. B 34(6), 4405 (1986).
22. K. N. Kudin and G. E. Scuseria, Phys. Rev. B 61(24), 16440 (2000).
23. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21(39), 395502 (2009).
24.See for Quantum ESPRESSO.
25. C. Adamo and V. Barone, J. Chem. Phys. 110(13), 6158 (1999).
26. J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122(23), 234102 (2005).
27. M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys.: Condens. Matter 20(6), 064201 (2008).
28.See supplementary material at for details of the energy dependence and time cost of C and Al according to q and k grids using various functionals and bandgap results for the semiconductors and insulators using Gaussian basis set and plane waves with nk = 24/nq = 6 and nk = 8/(nq = 8, 4) grids of various functionals. [Supplementary Material]
29. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
30. J.-W. Song, K. Yamashita, and K. Hirao, J. Chem. Phys. 137(24), 244105 (2012).

Data & Media loading...


Article metrics loading...



Integrable singularity in the exact exchange calculations in hybrid functionals is an old and well-known problem in plane-wave basis. Recently, we developed a hybrid functional named Gaussian-attenuating Perdew-Burke-Ernzerhof (Gau-PBE), which uses a Gaussian function as a modified Coulomb potential for the exact exchange. We found that the modified Coulomb potential of Gaussian function enables the exact exchange calculation in plane-wave basis to be singularity-free and, as a result, the Gau-PBE functional shows faster energy convergence on and grids for the exact exchange calculations. Also, a tight comparison (same and meshes) between Gau-PBE and two other hybrid functionals, i.e., PBE0 and HSE06, indicates Gau-PBE functional as the least computational time consuming. The Gau-PBE functional employed in conjunction with a plane wave basis provides bandgaps with higher accuracy than the PBE0 and HSE06 in agreement with bandgaps previously calculated using Gaussian-type-orbitals.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd