1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/4/10.1063/1.4774376
1.
1. EMIS Datareview Series, Vol. 13, edited by G. L. Harris (INSPEC Publication, London, 1995).
2.
2. P. Milani and S. Iannotta, Cluster Beam Synthesis of Nano-Structured Materials (Springer-Verlag, Berlin, 1999).
3.
3. S. Taioli, S. Simonucci, L. Calliari, and M. Dapor, Phys. Rep. 493, 237 (2010).
http://dx.doi.org/10.1016/j.physrep.2010.04.003
4.
4. G. N. Makarov, Phys. Usp. 49, 117 (2006).
http://dx.doi.org/10.1070/PU2006v049n02ABEH004666
5.
5. A. Wucher and N. Winograd, Anal. Bioanal. Chem. 396, 105 (2010).
http://dx.doi.org/10.1007/s00216-009-2971-x
6.
6. G. Fuchs, M. Treilleux, F. S. Aires, B. Cabaud, P. Melinon, and A. Hoareau, Phys. Rev. A 40, 6128 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.6128
7.
7. F. Rohmund, E. E. B. Campbell, O. Knospe, G. Seifert, and R. Schmidt, Phys. Rev. Lett. 76, 3289 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3289
8.
8. T. Raz and R. Levine, Chem. Phys. Lett. 226, 47 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00709-8
9.
9. R. J. Beuhler, G. Friedlander, and L. Friedman, Phys. Rev. Lett. 63, 1292 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1292
10.
10. J. Jakowski, S. Irle, and K. Morokuma, Phys. Rev. B 82, 125443 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125443
11.
11. L. Aversa, R. Verucchi, G. Ciullo, P. Moras, M. Pedio, L. Ferrari, A. Pesci, and S. Iannotta, Appl. Surf. Sci. 184, 350 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00516-5
12.
12. R. Verucchi, L. Aversa, G. Ciullo, A. Podestà, P. Milani, and S. Iannotta, Eur. Phys. J. B 26, 509 (2002).
http://dx.doi.org/10.1140/epjb/e20020120
13.
13. X. Hu, K. Albe, and R. Averback, J. Appl. Phys. 88, 49 (2000).
http://dx.doi.org/10.1063/1.373622
14.
14. G. Galli and F. Mauri, Phys. Rev. Lett. 73, 3471 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3471
15.
15. J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
http://dx.doi.org/10.1063/1.4757762
16.
16. J. Behler, K. Reuter, and M. Scheffler, Phys. Rev. B 77, 115421 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115421
17.
17. D. Matsiev, Z. Li, R. Cooper, I. Rahinov, C. Bartels, D. J. Auerbach, and A. M. Wodtke, Phys. Chem. Chem. Phys. 13, 8153 (2011).
http://dx.doi.org/10.1039/c0cp01418d
18.
18. I. Rahinov, R. Cooper, D. Matsiev, C. Bartels, D. J. Auerbach, and A. M. Wodtke, Phys. Chem. Chem. Phys. 13, 12680 (2011).
http://dx.doi.org/10.1039/c1cp20356h
19.
19. M. D. Seta, N. Tomozeiu, D. Sanvitto, and F. Evangelisti, Surf. Sci. 460, 203 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00533-1
20.
20. K. Sakamoto, D. Kondo, Y. Ushimi, M. Harada, A. Kimura, A. Kakizaki, and S. Suto, Phys. Rev. B 60, 2579 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2579
21.
21. C. Cepek, P. Schiavuta, M. Sancrotti, and M. Pedio, Phys. Rev. B 60, 2068 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2068
22.
22. M. Zilani, H. Xu, Y. Sun, X.-S. Wang, and A. Wee, Appl. Surf. Sci. 253, 4554 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.10.022
23.
23. Q. Cheng and S. Xu, J. Appl. Phys. 102, 056101 (2007).
http://dx.doi.org/10.1063/1.2776155
24.
24. R.-C. Fang and L. Ley, Phys. Rev. B 40, 3818 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3818
25.
25. C.-C. Liu, C. Lee, K.-L. Cheng, H.-C. Cheng, and T.-R. Yew, Appl. Phys. Lett. 66, 168 (1995).
http://dx.doi.org/10.1063/1.113552
26.
26. A. Santoni, J. Lancok, V. Dhanak, S. Loreti, G. Miller, and C. Minarini, Appl. Phys. A 81, 991 (2005).
http://dx.doi.org/10.1007/s00339-004-2976-4
27.
27. D. Chen and D. Sarid, Phys. Rev. B 49, 7612 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.7612
28.
28. J. Tersoff, Phys. Rev. B 37, 6991 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6991
29.
29. W. M. Foulkes and R. Haydock, Phys. Rev. B 39, 12520 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12520
30.
30. T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Köhler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai, J. Phys.: Condens. Matter 14, 3015 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/313
31.
31. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4774376 for movies of fullerenes impinging on the silicon surfaces. [Supplementary Material]
33.
33. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
34.
34. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
35.
35. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
36.
36. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
37.
37. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
38.
38. S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
39.
39. B. Chiavarino, M. E. Crestoni, S. Fornarini, S. Taioli, I. Mancini, and P. Tosi, J. Chem. Phys. 137, 024307 (2012).
http://dx.doi.org/10.1063/1.4732583
40.
40. S. Taioli, C. Cazorla, M. J. Gillan, and D. Alfè, Phys. Rev. B 75, 214103 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.214103
41.
41. D. Haberer, D. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci et al., Nano Lett. 10, 3360 (2010).
http://dx.doi.org/10.1021/nl101066m
42.
42. D. Haberer, L. Petaccia, M. Farjam, S. Taioli, S. Jafari, A. Nefedov, W. Zhang, L. Calliari, G. Scarduelli, B. Dora et al., Phys. Rev. B 83, 165433 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165433
43.
43. S. Taioli, P. Umari, and M. M. De Souza, Phys. Stat. Sol. 246, 2572 (2009).
http://dx.doi.org/10.1002/pssb.200982339
44.
44. P. Umari, O. Petrenko, S. Taioli, and M. M. De Souza, J. Chem. Phys. 136, 181101 (2012).
http://dx.doi.org/10.1063/1.4716178
45.
45. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
46.
46. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
47.
47. D. Alfè, Comput. Phys. Commun. 118, 31 (1999).
http://dx.doi.org/10.1016/S0010-4655(98)00195-7
48.
48. G. C. Vougioukalakis, M. M. Roubelakis, and M. Orfanopoulos, Chem. Soc. Rev. 39, 817 (2010).
http://dx.doi.org/10.1039/b913766a
49.
49. B. Zhang, C. Wang, C. Chan, and K. Ho, Phys. Rev. B 48, 11381 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.11381
50.
50. S. G. Kim and D. Tomanek, Phys. Rev. Lett. 72, 2418 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2418
51.
51. L. Horvath and T. A. Beu, Phys. Rev. B 77, 075102 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075102
52.
52. H. Zettergren, H. T. Schmidt, P. Reinhed, N. Haag, D. Fisher, Z. Berenyi, H. Cederquist, J. Jensen, P. Hvelplund, S. Tomita et al., J. Phys.: Conf. Ser. 88, 012039 (2007).
http://dx.doi.org/10.1088/1742-6596/88/1/012039
53.
53. S. Hunsche, T. Starczewski, A. l'Huillier, A. Persson, C.-G. Wahlström, B. van Linden van den Heuvell, and S. Svanberg, Phys. Rev. Lett. 77, 1966 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1966
54.
54. D. Marx and J. Hutter, Ab Initio Molecular Dynamics (Cambridge University Press, 2009).
55.
55. W. Andreoni and A. Curioni, Parallel Comput. 26, 819 (2000).
http://dx.doi.org/10.1016/S0167-8191(00)00014-4
56.
56. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
57.
57. J. Hutter, J. Chem. Phys. 118, 3928 (2003).
http://dx.doi.org/10.1063/1.1540109
58.
58. L. Landau, Zh. Eksper. Teor. Fiz. 2, 46 (1932).
59.
59. C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).
http://dx.doi.org/10.1098/rspa.1932.0165
60.
60. M. Barbatti, WIREs Comput. Mol. Sci. 1, 620 (2011).
http://dx.doi.org/10.1002/wcms.64
61.
61. X. Ke, Z. Zhu, F. Zhang, F. Wang, and Z. Wang, Chem. Phys. Lett. 313, 40 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01055-6
62.
62. R. D. Beck, J. Rockenberger, P. Weis, and M. M. Kappes, J. Chem. Phys. 104, 3638 (1996).
http://dx.doi.org/10.1063/1.471066
63.
63. S. Suhai and G. Seifert, J. Chem. Phys. 132, 111102 (2010).
http://dx.doi.org/10.1063/1.3355866
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/4/10.1063/1.4774376
Loading
/content/aip/journal/jcp/138/4/10.1063/1.4774376
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/4/10.1063/1.4774376
2013-01-22
2014-08-30

Abstract

In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C60 collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C60 impact on the Si surface is in good agreement with our experimental findings.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/4/1.4774376.html;jsessionid=1o8ij4pc8ca1p.x-aip-live-03?itemId=/content/aip/journal/jcp/138/4/10.1063/1.4774376&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/4/10.1063/1.4774376
10.1063/1.4774376
SEARCH_EXPAND_ITEM