1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Transfer of more than half the population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/5/10.1063/1.4790402
1.
1. R. N. Zare and R. B. Bernstein, Phys. Today 33, 43 (1980).
http://dx.doi.org/10.1063/1.2913823
2.
2. D. L. Phillips, H. B. Levene, and J. J. Valentine, J. Chem. Phys. 90, 1600 (1989).
http://dx.doi.org/10.1063/1.456052
3.
3. C. T. Rettner, D. J. Auerbach, and H. A. Michelsen, Phys. Rev. Lett. 68, 2547 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2547
4.
4. M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun, and D. H. Zhang, Science 311, 1440 (2006).
http://dx.doi.org/10.1126/science.1123452
5.
5. S. J. Greaves, E. Wrede, N. T. Goldberg, J. Zhang, D. J. Miller, and R. N. Zare, Nature 454, 88 (2008).
http://dx.doi.org/10.1038/nature07079
6.
6. A. E. DePristo, H. Rabitz, and R. B. Miles, J. Chem. Phys. 73, 4798 (1980).
http://dx.doi.org/10.1063/1.439998
7.
7. D. Wetzig, A. D. Rudert, and H. Zacharias, Eur. Phys. J. D 17, 181 (2001).
http://dx.doi.org/10.1007/s100530170021
8.
8. S. Cureton-Chinn, P. B. Kelly, and M. P. Augustine, J. Chem. Phys. 116, 4837 (2002).
http://dx.doi.org/10.1063/1.1451056
9.
9. N. C. Bartlett, D. J. Miller, R. N. Zare, D. Sofikitis, and T. P. Raktizis, J. Chem. Phys. 129, 084312 (2008).
http://dx.doi.org/10.1063/1.2973628
10.
10. N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At., Mol., Opt. Phys. 46, 55 (2001).
http://dx.doi.org/10.1016/S1049-250X(01)80063-X
11.
11. D. Grischkowski and M. M. T. Loy, Phys. Rev. A 12, 1117 (1975).
http://dx.doi.org/10.1103/PhysRevA.12.1117
12.
12. M. M. T. Loy, Phys. Rev. Lett. 41, 473 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.473
13.
13. T. Rickes, L. P. Yatsenko, S. Steuerwald, T. Halfmann, B. W. Shore and N. V. Vitanov, and K. Bergmann, J. Chem. Phys. 113, 534 (2000).
http://dx.doi.org/10.1063/1.481829
14.
14. L. P. Yatsenko, S. Guérin, and H. R. Jauslin, Phys. Rev. A 65, 043407 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.043407
15.
15. M. Oberst, H. Muench, G. Grigoryan, and T. Halfmann, Phys. Rev. A 78, 033409 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.033409
16.
16. M. Oberst, H. Muench, and T. Halfmann, Phys. Rev. Lett. 99, 173001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.173001
17.
17. N. Mukherjee and R. N. Zare, J. Chem. Phys. 135, 024201 (2011).
http://dx.doi.org/10.1063/1.3599711
18.
18. S. Chelkowski and A. D. Bandrauk, J. Raman Spectrosc. 28, 459 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4555(199706)28:6<459::AID-JRS124>3.0.CO;2-Y
19.
19. N. Mukherjee and R. N. Zare, J. Chem. Phys. 135, 184202 (2011).
http://dx.doi.org/10.1063/1.3657832
20.
20. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.763
21.
21. A. E. Pomerantz, F. Ausfelder, R. N. Zare, and W. M. Huo, Can. J. Chem. 82, 723 (2004).
http://dx.doi.org/10.1139/v04-074
22.
22. D. Grischkowski, M. M. T. Loy and P. F. Liao, Phys. Rev. A 12, 2514 (1975).
http://dx.doi.org/10.1103/PhysRevA.12.2514
23.
23. M. J. Dyer and W. K. Bischel, Phys. Rev. A 44, 3138 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.3138
24.
24. N. C.-M. Bartlett, J. Jankunas, and R. N. Zare, J. Chem. Phys. 134, 234310 (2011).
http://dx.doi.org/10.1063/1.3601923
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/5/10.1063/1.4790402
Loading
/content/aip/journal/jcp/138/5/10.1063/1.4790402
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/5/10.1063/1.4790402
2013-02-04
2014-09-30

Abstract

By using Stark-induced adiabatic Raman passage (SARP) with partially overlapping nanosecond pump (532 nm) and Stokes (683 nm) laser pulses, 73% ± 6% of the initial ground vibrational state population of H2 (v = 0, J = 0) is transferred to the single vibrationally excited eigenstate (v = 1, J = 0). In contrast to other Stark chirped Raman adiabatic passage techniques, SARP transfers population from the initial ground state to a vibrationally excited target state of the ground electronic surface without using an intermediate vibronic resonance within an upper electronic state. Parallel linearly polarized, co-propagating pump and Stokes laser pulses of respective durations 6 ns and 4.5 ns, are combined with a relative delay of ∼4 ns before orthogonally intersecting the molecular beam of H2. The pump and Stokes laser pulses have fluences of ∼10 J/mm2 and ∼1 J/mm2, respectively. The intense pump pulse generates the necessary sweeping of the Raman resonance frequency by ac (second-order) Stark shifting the rovibrational levels. As the frequency of the v = 0 → v = 1 Raman transition is swept through resonance in the presence of the strong pump and the weaker delayed Stokes pulses, the population of (v = 0, J = 0) is coherently transferred via an adiabatic passage to (v = 1, J = 0). A quantitative measure of the population transferred to the target state is obtained from the depletion of the ground-state population using 2 + 1 resonance enhanced multiphoton ionization (REMPI) in a time-of-flight mass spectrometer. The depletion is measured by comparing the REMPI signal of (v = 0, J = 0) at Raman resonance with that obtained when the Stokes pulse is detuned from the Stark-shifted Raman resonance. No depletion is observed with either the pump or the Stokes pulses alone, confirming that the measured depletion is indeed caused by the SARP-induced population transfer from the ground to the target state and not by the loss of molecules from photoionization or photodissociation. The two-photon resonant UV pulse used for REMPI detection is delayed by 20 ns with respect to the pump pulse to avoid the ac Stark shift originating from the pump and Stokes laser pulses. This experiment demonstrates the feasibility of preparing a large ensemble of isolated molecules in a preselected single quantum state without requiring an intermediate vibronic resonance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/5/1.4790402.html;jsessionid=64d3rbvqvol13.x-aip-live-03?itemId=/content/aip/journal/jcp/138/5/10.1063/1.4790402&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Transfer of more than half the population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/5/10.1063/1.4790402
10.1063/1.4790402
SEARCH_EXPAND_ITEM