1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Biexciton generation rates in CdSe nanorods are length independent
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/5/10.1063/1.4790600
1.
1. S. Kolodinski, J. H. Werner, T. Wittchen, and H. J. Queisser, Appl. Phys. Lett. 63, 2405 (1993).
http://dx.doi.org/10.1063/1.110489
2.
2. O. Christensen, J. Appl. Phys. 47, 689 (1976).
http://dx.doi.org/10.1063/1.322635
3.
3. A. J. Nozik, Physica E 14, 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
4.
4. R. D. Schaller and V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.186601
5.
5. R. D. Schaller, M. A. Petruska, and V. I. Klimov, Appl. Phys. Lett. 87, 253102 (2005).
http://dx.doi.org/10.1063/1.2142092
6.
6. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett. 5, 865 (2005).
http://dx.doi.org/10.1021/nl0502672
7.
7. R. D. Schaller, V. M. Agranovich, and V. I. Klimov, Nat. Phys. 1, 189 (2005).
http://dx.doi.org/10.1038/nphys151
8.
8. V. I. Klimov, J. Phys. Chem. B 110, 16827 (2006).
http://dx.doi.org/10.1021/jp0615959
9.
9. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, Nano Lett. 6, 424 (2006).
http://dx.doi.org/10.1021/nl052276g
10.
10. J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. R. Yu, O. I. Micic, R. J. Ellingson, and A. J. Nozik, J. Am. Chem. Soc. 128, 3241 (2006).
http://dx.doi.org/10.1021/ja0574973
11.
11. J. J. H. Pijpers et al., J. Phys. Chem. C 111, 4146 (2007).
http://dx.doi.org/10.1021/jp066709v
12.
12. R. D. Schaller, J. M. Pietryga, and V. I. Klimov, Nano Lett. 7, 3469 (2007).
http://dx.doi.org/10.1021/nl072046x
13.
13. M. C. Beard, K. P. Knutsen, P. R. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007).
http://dx.doi.org/10.1021/nl071486l
14.
14. J. A. McGuire, M. Sykora, J. Joo, J. M. Pietryga, and V. I. Klimov, Nano Lett. 10, 2049 (2010).
http://dx.doi.org/10.1021/nl100177c
15.
15. I. Gdor, H. Sachs, A. Roitblat, D. B. Strasfeld, M. G. Bawendi, and S. Ruhman, ACS Nano 6, 3269 (2012).
http://dx.doi.org/10.1021/nn300184n
16.
16. J. T. Stewart, L. A. Padilha, M. M. Qazilbash, J. M. Pietryga, A. G. Midgett, J. M. Luther, M. C. Beard, A. J. Nozik, and V. I. Klimov, Nano Lett. 12, 622 (2012).
http://dx.doi.org/10.1021/nl203367m
17.
17. A. Franceschetti, J. M. An, and A. Zunger, Nano Lett. 6, 2191 (2006).
http://dx.doi.org/10.1021/nl0612401
18.
18. G. Allan and C. Delerue, Phys. Rev. B 73, 205423 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205423
19.
19. E. Rabani and R. Baer, Nano Lett. 8, 4488 (2008).
http://dx.doi.org/10.1021/nl802443c
20.
20. Z. B. Lin, A. Franceschetti, and M. T. Lusk, ACS Nano 5, 2503 (2011).
http://dx.doi.org/10.1021/nn200141f
21.
21. R. Baer and E. Rabani, Nano Lett. 12, 2123 (2012).
http://dx.doi.org/10.1021/nl300452c
22.
22. A. Shabaev, A. L. Efros, and A. J. Nozik, Nano Lett. 6, 2856 (2006).
http://dx.doi.org/10.1021/nl062059v
23.
23. C. M. Isborn, S. V. Kilina, X. S. Li, and O. V. Prezhdo, J. Phys. Chem. C 112, 18291 (2008).
http://dx.doi.org/10.1021/jp807283j
24.
24. C. M. Isborn and O. V. Prezhdo, J. Phys. Chem. C 113, 12617 (2009).
http://dx.doi.org/10.1021/jp902621a
25.
25. E. Rabani and R. Baer, Chem. Phys. Lett. 496, 227 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.059
26.
26. W. M. Witzel, A. Shabaev, C. S. Hellberg, V. L. Jacobs, and A. L. Efros, Phys. Rev. Lett. 105, 137401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.137401
27.
27. A. Striolo, J. Ward, J. M. Prausnitz, W. J. Parak, D. Zanchet, D. Gerion, D. Milliron, and A. P. Alivisatos, J. Phys. Chem. B 106, 5500 (2002).
http://dx.doi.org/10.1021/jp020170t
28.
28. C. Delerue, G. Allan, J. J. H. Pijpers, and M. Bonn, Phys. Rev. B 81, 125306 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125306
29.
29. G. Allan and C. Delerue, ACS Nano 5, 7318 (2011).
http://dx.doi.org/10.1021/nn202180u
30.
30. K. A. Velizhanin and A. Piryatinski, Phys. Rev. Lett. 106, 207401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.207401
31.
31. K. A. Velizhanin and A. Piryatinski, Phys. Rev. B 86, 165319 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165319
32.
32. P. D. Cunningham, J. E. Boercker, E. E. Foos, M. P. Lumb, A. R. Smith, J. G. Tischler, and J. S. Melinger, Nano Lett. 11, 3476 (2011).
http://dx.doi.org/10.1021/nl202014a
33.
33. N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, and P. L. McEuen, Science 325, 1367 (2009).
http://dx.doi.org/10.1126/science.1176112
34.
34. S. J. Wang, M. Khafizov, X. M. Tu, M. Zheng, and T. D. Krauss, Nano Lett. 10, 2381 (2010).
http://dx.doi.org/10.1021/nl100343j
35.
35. L. W. Wang and A. Zunger, Phys. Rev. B 51, 17398 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.17398
36.
36. R. Baer and E. Rabani, Nano Lett. 10, 3277 (2010).
http://dx.doi.org/10.1021/nl100639h
37.
37. S. Toledo and E. Rabani, J. Comput. Phys. 180, 256 (2002).
http://dx.doi.org/10.1006/jcph.2002.7090
38.
38. E. Rabani, B. Hetenyi, B. J. Berne, and L. E. Brus, J. Chem. Phys. 110, 5355 (1999).
http://dx.doi.org/10.1063/1.478431
39.
39. P. K. Jain, D. Ghosh, R. Baer, E. Rabani, and A. P. Alivisatos, Proc. Natl. Acad. Sci. U.S.A. 109, 8016 (2012).
http://dx.doi.org/10.1073/pnas.1121319109
40.
40. D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, and U. Banin, Phys. Rev. Lett. 89, 086801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.086801
41.
41. D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Vanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, J. Lumin. 47, 113 (1990).
http://dx.doi.org/10.1016/0022-2313(90)90007-X
42.
42. L. L. Chen, H. Bao, T. Z. Tan, O. V. Prezhdo, and X. L. Ruan, J. Phys. Chem. C 115, 11400 (2011).
http://dx.doi.org/10.1021/jp201408m
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/5/10.1063/1.4790600
Loading
/content/aip/journal/jcp/138/5/10.1063/1.4790600
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/5/10.1063/1.4790600
2013-02-06
2014-09-02

Abstract

We study how shape affects multiexciton generation rates in a semiconducting nanocrystal by considering CdSe nanorods with varying diameters and aspect ratios. The calculations employ an atomistic semiempirical pseudopotential model combined with an efficacious stochastic approach applied to systems containing up to 20 000 atoms. The effect of nanorod diameter and aspect ratio on multiexciton generation rates is analyzed in terms of the scaling of the density of trion states and the scaling of the Coulomb couplings. Both show distinct scaling from spherical nanocrystals leading to a surprising result where the multiexciton generation rates are roughly independent of the nanorod length.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/5/1.4790600.html;jsessionid=54ninbuoi82p5.x-aip-live-03?itemId=/content/aip/journal/jcp/138/5/10.1063/1.4790600&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Biexciton generation rates in CdSe nanorods are length independent
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/5/10.1063/1.4790600
10.1063/1.4790600
SEARCH_EXPAND_ITEM