1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An efficient method for calculating dynamical hyperpolarizabilities using real-time time-dependent density functional theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/6/10.1063/1.4790583
1.
1. Nonlinear Optical Properties of Organic Molecules and Crystals, edited by D. S. Chemla and J. Zyss (Academic, San Diego, 1987).
2.
2. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
3.
3. D. P. Shelton and J. E. Rice, Chem. Rev. 94, 3 (1994).
http://dx.doi.org/10.1021/cr00025a001
4.
4. D. R. Kanis, M. A. Ratner, and T. J. Marks, Chem. Rev. 94, 195 (1994).
http://dx.doi.org/10.1021/cr00025a007
5.
5. F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, Adv. Mater. 20, 4641 (2008).
http://dx.doi.org/10.1002/adma.200800402
6.
6. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
7.
7. H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, S34 (1965).
http://dx.doi.org/10.1063/1.1701512
8.
8. J. A. Pople, J. W. McIver, and N. S. Ostlund, J. Chem. Phys. 49, 2960 (1968).
http://dx.doi.org/10.1063/1.1670536
9.
9. J. E. Gready, G. B. Backsay, and N. S. Hush, Chem. Phys. 22, 141 (1977).
http://dx.doi.org/10.1016/0301-0104(77)85217-8
10.
10. R. J. Bartlett and G. D. Purvis, Phys. Rev. A 20, 1313 (1979).
http://dx.doi.org/10.1103/PhysRevA.20.1313
11.
11. H. A. Kurtz, J. J. P. Stewart, and K. M. Dieter, J. Comput. Chem. 11, 82 (1990).
http://dx.doi.org/10.1002/jcc.540110110
12.
12. F. Sim, S. Chin, M. Dupuis, and J. E. Rice, J. Phys. Chem. 97, 1158 (1993).
http://dx.doi.org/10.1021/j100108a010
13.
13. R. McWeeny, Int. J. Quantum Chem. 23, 405 (1983).
http://dx.doi.org/10.1002/qua.560230209
14.
14. P. Pulay, J. Chem. Phys. 78, 5043 (1983).
http://dx.doi.org/10.1063/1.445372
15.
15. C. E. Dykstra and P. G. Jasien, Chem. Phys. Lett. 109, 388 (1984).
http://dx.doi.org/10.1016/0009-2614(84)85607-9
16.
16. R. D. Amos, Chem. Phys. Lett. 124, 376 (1986).
http://dx.doi.org/10.1016/0009-2614(86)85037-0
17.
17. P. Lizeretti and R. Zanasi, J. Chem. Phys. 74, 5216 (1981).
http://dx.doi.org/10.1063/1.441732
18.
18. B. J. Orr and J. F. Ward, Mol. Phys. 20, 513 (1971).
http://dx.doi.org/10.1080/00268977100100481
19.
19. D. Maurice and M. Head-Gordon, Mol. Phys. 96, 1533 (1999).
http://dx.doi.org/10.1080/00268979909483096
20.
20. G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
http://dx.doi.org/10.1063/1.443164
21.
21. H. Sekino and J. Bartlett, J. Chem. Phys. 85, 976 (1986).
http://dx.doi.org/10.1063/1.451255
22.
22. S. P. Karna and M. Dupuis, J. Comput. Chem. 12, 487 (1991).
http://dx.doi.org/10.1002/jcc.540120409
23.
23. J. E. Rice, R. D. Amos, S. M. Colwell, N. C. Handy, and J. Sanz, J. Chem. Phys. 93, 8828 (1990).
http://dx.doi.org/10.1063/1.459221
24.
24. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 109, 10644 (1998).
http://dx.doi.org/10.1063/1.477762
25.
25. F. Furche, J. Chem. Phys. 114, 5982 (2001).
http://dx.doi.org/10.1063/1.1353585
26.
26. S. Tretiak and V. Chernyak, J. Chem. Phys. 119, 8809 (2003).
http://dx.doi.org/10.1063/1.1614240
27.
27. X. Andrade, S. Botti, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 126, 184106 (2007).
http://dx.doi.org/10.1063/1.2733666
28.
28. H. Larsen, P. Jo¿rgensen, J. Olsen, and T. Helgaker, J. Chem. Phys. 113, 8908 (2000).
http://dx.doi.org/10.1063/1.1318745
29.
29. J.-I. Iwata, K. Yabana, and G. F. Bertsch, J. Chem. Phys. 115, 8773 (2001).
http://dx.doi.org/10.1063/1.1411996
30.
30. H. H. Heinze, F. D. Sala, and A. Görling, J. Chem. Phys. 116, 9624 (2002).
http://dx.doi.org/10.1063/1.1476014
31.
31. P. Sałek, O. Vahtras, T. Helgaker, and H. Ågren, J. Chem. Phys. 117, 9630 (2002).
http://dx.doi.org/10.1063/1.1516805
32.
32. A. Ye and J. Autschbach, J. Chem. Phys. 125, 234101 (2006).
http://dx.doi.org/10.1063/1.2388266
33.
33. A. Ye, S. Patchkovskii, and J. Autschbach, J. Chem. Phys. 127, 074104 (2007).
http://dx.doi.org/10.1063/1.2749505
34.
34. F. Wang, C. Y. Yam, and G. Chen, J. Chem. Phys. 126, 244102 (2007).
http://dx.doi.org/10.1063/1.2746034
35.
35. K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4484
36.
36. K. Yabana and G. F. Bertsch, Int. J. Quantum Chem. 75, 55 (1999).
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K
37.
37. K. Yabana, T. Nakatsukasa, J.-I. Iwata, and G. F. Bertsch, Phys. Status Solidi B 243, 1121 (2006).
http://dx.doi.org/10.1002/pssb.200642005
38.
38. A. Tsolakidis, D. Sánchez-Portal, and R. M. Martin, Phys. Rev. B 66, 235416 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235416
39.
39. F. Wang, C. Y. Yam, G. Chen, and K. Fan, J. Chem. Phys. 126, 134104 (2007).
http://dx.doi.org/10.1063/1.2715549
40.
40. Y. Takimoto, F. D. Vila, and J. J. Rehr, J. Chem. Phys. 127, 154114 (2007).
http://dx.doi.org/10.1063/1.2790014
41.
41. M. R. Wall and D. Neuhauser, J. Chem. Phys. 102, 8011 (1995).
http://dx.doi.org/10.1063/1.468999
42.
42. X. Li et al., Phys. Chem. Chem. Phys. 7, 233 (2005).
http://dx.doi.org/10.1039/b415849k
43.
43. C. M. Isborn, X. Li, and J. C. Tully, J. Chem. Phys. 126, 134307 (2007).
http://dx.doi.org/10.1063/1.2713391
44.
44. F. Ding, W. Liang, C. T. Chapman, C. M. Isborn, and X. Li, J. Chem. Phys. 135, 164101 (2011).
http://dx.doi.org/10.1063/1.3655675
45.
45. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1990).
46.
46. W. Liang, C. T. Chapman, and X. Li, J. Chem. Phys. 134, 184102 (2011).
http://dx.doi.org/10.1063/1.3589144
47.
47. W. Liang, S. A. Fischer, M. J. Frisch, and X. Li, J. Chem. Theory Comput. 7, 3540 (2011).
http://dx.doi.org/10.1021/ct200485x
48.
48. J. Kauczor, P. Jørgensen, and P. Norman, J. Chem. Theory Comput. 7, 1610 (2011).
http://dx.doi.org/10.1021/ct100729t
49.
49. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian Development Version, Revision H.09+, Gaussian, Inc., Wallingford, CT, 2011.
50.
50. A. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
51.
51. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
52.
52. P. Stephens, F. Devlin, C. Chabalowski, and M. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
53.
53. B. Champagne et al., J. Phys. Chem. A 104, 4755 (2000).
http://dx.doi.org/10.1021/jp993839d
54.
54. D. Jacquemin, J. M. Andre, and E. A. Perpete, J. Chem. Phys. 121, 4396 (2004).
http://dx.doi.org/10.1063/1.1775181
55.
55. E. R. Davidson, B. E. Eichinger, and B. H. Robinson, Opt. Mater. 29, 360 (2006).
http://dx.doi.org/10.1016/j.optmat.2006.03.031
56.
56. C. M. Isborn et al., J. Phys. Chem. A 111, 1319 (2007).
http://dx.doi.org/10.1021/jp064096g
57.
57. A. P. Chafin and G. A. Lindsay, J. Phys. Chem. C 112, 7829 (2008).
http://dx.doi.org/10.1021/jp711265v
58.
58. J. Hung et al., J. Phys. Chem. C 114, 22284 (2010).
http://dx.doi.org/10.1021/jp107803q
59.
59. J. Heyd and G. Scuseria, J. Chem. Phys. 121, 1187 (2004).
http://dx.doi.org/10.1063/1.1760074
60.
60. G. E. S. J. Heyd and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
61.
61. J. R. Hammond, K. Kowalski, and W. A. deJong, J. Chem. Phys. 127, 144105 (2007).
http://dx.doi.org/10.1063/1.2772853
62.
62. T. Kato, Prog. Theor. Phys. 4, 514 (1949).
http://dx.doi.org/10.1143/PTP.4.514
63.
63. F. Rellich, Math. Ann. 113, 600 (1937).
http://dx.doi.org/10.1007/BF01571652
64.
64. P. A. Sullivan et al., J. Am. Chem. Soc. 129, 7523 (2007).
http://dx.doi.org/10.1021/ja068322b
65.
65. J. A. Davies et al., J. Am. Chem. Soc. 130, 10565 (2008).
http://dx.doi.org/10.1021/ja8007424
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/6/10.1063/1.4790583
Loading
/content/aip/journal/jcp/138/6/10.1063/1.4790583
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/6/10.1063/1.4790583
2013-02-13
2014-09-03

Abstract

In this paper we present a time-domain time-dependent density functional theory (TDDFT) approach to calculate frequency-dependent polarizability and hyperpolarizabilities. In this approach, the electronic degrees of freedom are propagated within the density matrix based TDDFT framework using the efficient modified midpoint and unitary transformation algorithm. We use monochromatic waves as external perturbations and apply the finite field method to extract various orders of the time-dependent dipole moment. By fitting each order of time-dependent dipole to sinusoidal waves with harmonic frequencies, one can obtain the corresponding (hyper)polarizability tensors. This approach avoids explicit Fourier transform and therefore does not require long simulation time. The method is illustrated with application to the optically active organic molecule para-nitroaniline, of which the frequency-dependent polarizability α(−ω; ω), second-harmonic generation β(−2ω; ω, ω), optical rectification β(0; −ω, ω), third-harmonic generation γ(−3ω; ω, ω, ω), and degenerate four-wave mixing γ(−ω; ω, ω, −ω) are calculated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/6/1.4790583.html;jsessionid=i3bc8qme36re.x-aip-live-02?itemId=/content/aip/journal/jcp/138/6/10.1063/1.4790583&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An efficient method for calculating dynamical hyperpolarizabilities using real-time time-dependent density functional theory
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/6/10.1063/1.4790583
10.1063/1.4790583
SEARCH_EXPAND_ITEM