1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Adsorption of hydrogen on neutral and charged fullerene: Experiment and theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/7/10.1063/1.4790403
1.
1. G. W. Crabtree and M. S. Dresselhaus, MRS Bull. 33, 421 (2008).
http://dx.doi.org/10.1557/mrs2008.84
2.
2. L. Schlapbach and A. Züttel, Nature (London) 414, 353 (2001).
http://dx.doi.org/10.1038/35104634
3.
3. U.S. Department of Energy, Energy Efficiency and Renewable Energy/Hydrogen Storage, see http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html, 2013.
4.
4. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. 131, 8875 (2009);
http://dx.doi.org/10.1021/ja9015765
4.H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, and O. M. Yaghi, Science 329, 424 (2010);
http://dx.doi.org/10.1126/science.1192160
4.P. B. Sorokin, H. Lee, L. Y. Antipina, A. K. Singh, and B. I. Yakobson, Nano Lett. 11, 2660 (2011);
http://dx.doi.org/10.1021/nl200721v
4.P. Jena, J. Phys. Chem. Lett. 2, 206 (2011);
http://dx.doi.org/10.1021/jz1015372
4.N. Park, K. Choi, J. Hwang, D. W. Kim, D. O. Kim, and J. Ihm, Proc. Natl. Acad. Sci. U.S.A. 109, 19893 (2012).
http://dx.doi.org/10.1073/pnas.1217137109
5.
5. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London) 386, 377 (1997);
http://dx.doi.org/10.1038/386377a0
5.Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 2307 (1999);
http://dx.doi.org/10.1063/1.123833
5.M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett. 100, 206806 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.206806
5.K. R. S. Chandrakumar and S. K. Ghosh, Nano Lett. 8, 13 (2008);
http://dx.doi.org/10.1021/nl071456i
5.D. Saha and S. G. Deng, Carbon 48, 3471 (2010);
http://dx.doi.org/10.1016/j.carbon.2010.05.044
5.Y. Yamada, Y. Satake, K. Watanabe, Y. Yokoyama, R. Okada, and M. Sasaki, Phys. Rev. B 84, 235425 (2011);
http://dx.doi.org/10.1103/PhysRevB.84.235425
5.P. Mauron, A. Remhof, A. Bliersbach, A. Borgschulte, A. Zuttel, D. Sheptyakov, M. Gaboardi, M. Choucair, D. Pontiroli, M. Aramini, A. Gorreri, and M. Ricco, Int. J. Hydrogen Energy 37, 14307 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.07.045
6.
6. M. Yoon, S. Y. Yang, E. Wang, and Z. Y. Zhang, Nano Lett. 7, 2578 (2007).
http://dx.doi.org/10.1021/nl070809a
7.
7. M. Bienfait, P. Zeppenfeld, N. Dupont-Pavlovsky, M. Muris, M. R. Johnson, T. Wilson, M. DePies, and O. E. Vilches, Phys. Rev. B 70, 035410 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.035410
8.
8. H. Freimuth, H. Wiechert, and H. J. Lauter, Surf. Sci. 189, 548 (1987).
http://dx.doi.org/10.1016/S0039-6028(87)80480-6
9.
9. H. Freimuth, H. Wiechert, H. P. Schildberg, and H. J. Lauter, Phys. Rev. B 42, 587 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.587
10.
10. C. Leidlmair, Y. Wang, P. Bartl, H. Schöbel, S. Denifl, M. Probst, M. Alcamí, F. Martín, H. Zettergren, K. Hansen, O. Echt, and P. Scheier, Phys. Rev. Lett. 108, 076101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.076101
11.
11. H. Shin and Y. Kwon, J. Chem. Phys. 136, 064514 (2012).
http://dx.doi.org/10.1063/1.3685848
12.
12. C. Leidlmair, P. Bartl, H. Schöbel, S. Denifl, M. Probst, P. Scheier, and O. Echt, Astrophys. J. Lett. 738, L4 (2011).
http://dx.doi.org/10.1088/2041-8205/738/1/L4
13.
13. Extensive hydrogenation of fullerene ions had been observed before,14,15 but those studies did not reveal the formation of distinct adsorption layers.
14.
14. D. Schröder, D. K. Bohme, T. Weiske, and H. Schwarz, Int. J. Mass Spectrom. Ion Process. 116, R13 (1992);
http://dx.doi.org/10.1016/0168-1176(92)80127-M
14.S. Petrie, G. Javahery, J. Wang, and D. K. Bohme, J. Am. Chem. Soc. 114, 6268 (1992).
http://dx.doi.org/10.1021/ja00041a068
15.
15. M. Farnik and J. Toennies, J. Chem. Phys. 122, 014307 (2005).
http://dx.doi.org/10.1063/1.1815272
16.
16. T. Oka, Proc. Natl. Acad. Sci. U.S.A. 103, 12235 (2006).
http://dx.doi.org/10.1073/pnas.0601242103
17.
17. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985);
http://dx.doi.org/10.1038/318162a0
17.H. W. Kroto and M. Jura, Astron. Astrophys. 263, 275 (1992).
18.
18. F. R. di Brozolo, T. E. Bunch, R. H. Fleming, and J. Macklin, Nature (London) 369, 37 (1994).
http://dx.doi.org/10.1038/369037a0
19.
19. B. H. Foing and P. Ehrenfreund, Nature (London) 369, 296 (1994);
http://dx.doi.org/10.1038/369296a0
19.B. H. Foing and P. Ehrenfreund, Astron. Astrophys. 317, L59 (1997).
20.
20. S. Petrie and D. K. Bohme, Astrophys. J. 540, 869 (2000).
http://dx.doi.org/10.1086/309346
21.
21. G. H. Herbig, Astrophys. J. 542, 334 (2000);
http://dx.doi.org/10.1086/309523
21.A. Sassara, G. Zerza, M. Chergui, and S. Leach, Astrophys. J., Suppl. Ser. 135, 263 (2001).
http://dx.doi.org/10.1086/323533
22.
22. X. K. Wang, X. W. Lin, M. Mesleh, M. F. Jarrold, V. P. Dravid, J. B. Ketterson, and R. P. H. Chang, J. Mater. Res. 10, 1977 (1995).
http://dx.doi.org/10.1557/JMR.1995.1977
23.
23. C. Jäger, F. Huisken, H. Mutschke, I. L. Jansa, and T. H. Henning, Astrophys. J. 696, 706 (2009).
http://dx.doi.org/10.1088/0004-637X/696/1/706
24.
24. J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, Science 329, 1180 (2010);
http://dx.doi.org/10.1126/science.1192035
24.D. A. Garcia-Hernandez, A. Manchado, P. Garcia-Lario, L. Stanghellini, E. Villaver, R. A. Shaw, R. Szczerba, and J. V. Perea-Calderon, Astrophys. J. Lett. 724, L39 (2010);
http://dx.doi.org/10.1088/2041-8205/724/1/L39
24.J. Bernard-Salas, J. Cami, E. Peeters, A. P. Jones, E. R. Micelotta, and M. A. T. Groenewegen, Astrophys. J. 757, 41 (2012).
http://dx.doi.org/10.1088/0004-637X/757/1/41
25.
25. Y. Zhang and S. Kwok, Astrophys. J. 730, 126 (2011).
http://dx.doi.org/10.1088/0004-637X/730/2/126
26.
26. K. Sellgren, M. W. Werner, J. G. Ingalls, J. D. T. Smith, T. M. Carleton, and C. Joblin, Astrophys. J. Lett. 722, L54 (2010).
http://dx.doi.org/10.1088/2041-8205/722/1/L54
27.
27. C. S. Jeffery, Astron. Astrophys. 299, 135 (1995);
27.D. A. Garcia-Hernandez, N. K. Rao, and D. L. Lambert, Astrophys. J. 729, 126 (2011).
http://dx.doi.org/10.1088/0004-637X/729/2/126
28.
28. K. R. G. Roberts, K. T. Smith, and P. J. Sarre, Mon. Not. R. Astron. Soc. 421, 3277 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2012.20552.x
29.
29. T. P. Snow and B. J. McCall, Annu. Rev. Astron. Astrophys. 44, 367 (2006).
http://dx.doi.org/10.1146/annurev.astro.43.072103.150624
30.
30. M. L. Heger, Lick Obs. Bull. 10, 146 (1922).
31.
31. L. M. Hobbs, D. G. York, J. A. Thorburn, T. P. Snow, M. Bishof, S. D. Friedman, B. J. McCall, T. Oka, B. Rachford, P. Sonnentrucker, and D. E. Welty, Astrophys. J. 705, 32 (2009).
http://dx.doi.org/10.1088/0004-637X/705/1/32
32.
32. P. J. Sarre, J. Mol. Spectrosc. 238, 1 (2006).
http://dx.doi.org/10.1016/j.jms.2006.03.009
33.
33. J. P. Toennies and A. F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004).
http://dx.doi.org/10.1002/anie.200300611
34.
34. L. An der Lan, P. Bartl, C. Leidlmair, H. Schöbel, R. Jochum, S. Denifl, T. D. Märk, A. M. Ellis, and P. Scheier, J. Chem. Phys. 135, 044309 (2011).
http://dx.doi.org/10.1063/1.3610388
35.
35. MATLAB R2011a, Mathworks, see http://www.mathworks.com.
36.
36. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009;
36.R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).
http://dx.doi.org/10.1063/1.1674902
37.
37. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
38.
38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39. N. Sai, K. Leung, and J. R. Chelikowsky, Phys. Rev. B 83, 121309(R) (2011);
http://dx.doi.org/10.1103/PhysRevB.83.121309
39.e-print arXiv:1103.1938v1.
40.
40. C. Van Caillie and R. D. Amos, Chem. Phys. Lett. 328, 446 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00942-8
41.
41. S. Grimme, J. Comput. Chem. 27, 1787 (2006);
http://dx.doi.org/10.1002/jcc.20495
41.J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
42.
42. S. E. Huber, S. Dalnodar, W. Kausch, S. Kimeswenger, and M. Probst, AIP Adv. 2, 032180 (2012);
http://dx.doi.org/10.1063/1.4755786
42.M. P. Waller, H. Kruse, C. Muck-Lichtenfeld, and S. Grimme, Chem. Soc. Rev. 41, 3119 (2012);
http://dx.doi.org/10.1039/c2cs15244d
42.Y. Zhao, X. J. Wu, J. L. Yang, and X. C. Zeng, Phys. Chem. Chem. Phys. 13, 11766 (2011).
http://dx.doi.org/10.1039/c1cp20534j
43.
43. See http://www.physics.nist.gov/PhysRefData/Elements/ for atomic element data.
44.
44. S. Jaksch, A. Mauracher, A. Bacher, S. Denifl, F. Ferreira da Silva, H. Schöbel, O. Echt, T. D. Märk, M. Probst, D. K. Bohme, and P. Scheier, J. Chem. Phys. 129, 224306 (2008);
http://dx.doi.org/10.1063/1.3035833
44.P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, and O. Echt, ChemPhysChem 14, 227 (2012).
http://dx.doi.org/10.1002/cphc.201200664
45.
45. T. T. Vehvilainen, M. G. Ganchenkova, L. E. Oikkonen, and R. M. Nieminen, Phys. Rev. B 84, 085447 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085447
46.
46. C. C. Henderson, C. M. Rohlfing, and P. A. Cahill, Chem. Phys. Lett. 213, 383 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85150-M
47.
47. T. Korona, A. Hesselmann, and H. Dodziuk, J. Chem. Theory Comput. 5, 1585 (2009).
http://dx.doi.org/10.1021/ct900108f
48.
48. P. A. Denis, J. Phys. Chem. C 112, 2791 (2008).
http://dx.doi.org/10.1021/jp710114v
49.
49. K. A. Williams, B. K. Pradhan, P. C. Eklund, M. K. Kostov, and M. W. Cole, Phys. Rev. Lett. 88, 165502 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.165502
50.
50. C. M. Brown, T. Yildirim, D. A. Neumann, M. J. Heben, T. Gennett, A. C. Dillon, J. L. Alleman, and J. E. Fischer, Chem. Phys. Lett. 329, 311 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01003-4
51.
51. J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lopez, and J. A. Alonso, J. Chem. Phys. 117, 2281 (2002).
http://dx.doi.org/10.1063/1.1488595
52.
52. I. Cabria, M. J. Lopez, and J. A. Alonso, Comput. Mater. Sci. 35, 238 (2006).
http://dx.doi.org/10.1016/j.commatsci.2004.10.008
53.
53. Y. Okamoto, J. Phys. Chem. A 105, 7634 (2001);
http://dx.doi.org/10.1021/jp0104583
53.A. Ferre-Vilaplana, J. Chem. Phys. 122, 104709 (2005);
http://dx.doi.org/10.1063/1.1859278
53.M. Rubes and O. Bludsky, ChemPhysChem 10, 1868 (2009).
http://dx.doi.org/10.1002/cphc.200900057
54.
54. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, and P. Jena, Nano Lett. 9, 1501 (2009);
http://dx.doi.org/10.1021/nl803498e
54.T. X. Nguyen, J. S. Bae, Y. Wang, and S. K. Bhatia, Langmuir 25, 4314 (2009).
http://dx.doi.org/10.1021/la900220g
55.
55. A. van Deursen and J. Reuss, Int. J. Mass Spectrom. Ion Phys. 11, 483 (1973);
http://dx.doi.org/10.1016/0020-7381(73)80077-4
55.Y. K. Bae, P. C. Cosby, and D. C. Lorents, Chem. Phys. Lett. 159, 214 (1989);
http://dx.doi.org/10.1016/0009-2614(89)87412-3
55.S. L. Anderson, T. Hirooka, P. W. Tiedemann, B. H. Mahan, and Y. T. Lee, J. Chem. Phys. 73, 4779 (1980).
http://dx.doi.org/10.1063/1.440010
56.
56. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Heidelberg, 1985).
57.
57. H. Tachikawa, Phys. Chem. Chem. Phys. 2, 4702 (2000).
http://dx.doi.org/10.1039/b004969g
58.
58. Y. Ekinci, E. L. Knuth, and J. P. Toennies, J. Chem. Phys. 125, 133409 (2006).
http://dx.doi.org/10.1063/1.2217942
59.
59. W. K. Lewis, C. M. Lindsay, R. J. Bemish, and R. E. Miller, J. Am. Chem. Soc. 127, 7235 (2005);
http://dx.doi.org/10.1021/ja042489s
59.A. M. Ellis and S. F. Yang, Phys. Rev. A 76, 032714 (2007);
http://dx.doi.org/10.1103/PhysRevA.76.032714
59.O. Echt, T. D. Märk, and P. Scheier, in Handbook of Nanophysics, edited by K. Sattler (CRC, New York, 2010), Vol. 2;
59.B. Shepperson, J. Liu, A. M. Ellis, and S. F. Yang, J. Chem. Phys. 135, 041101 (2011).
http://dx.doi.org/10.1063/1.3622764
60.
60. Penning ionization will dominate if the neutral dopant is located at the surface of the helium droplet, or if the electron energy is below the 24.59 eV threshold for formation of He+.61
61.
61. A. A. Scheidemann, V. V. Kresin, and H. Hess, J. Chem. Phys. 107, 2839 (1997);
http://dx.doi.org/10.1063/1.474642
61.L. An der Lan, P. Bartl, C. Leidlmair, H. Schöbel, S. Denifl, T. D. Märk, A. M. Ellis, and P. Scheier, Phys. Rev. B 85, 115414 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115414
62.
62. E. Loginov, L. F. Gomez, N. Chiang, A. Halder, N. Guggemos, V. V. Kresin, and A. F. Vilesov, Phys. Rev. Lett. 106, 233401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.233401
63.
63. R. K. Yoo, B. Ruscic, and J. Berkowitz, J. Chem. Phys. 96, 911 (1992).
http://dx.doi.org/10.1063/1.462112
64.
64. H. Schöbel, P. Bartl, C. Leidlmair, M. Daxner, S. Zöttl, S. Denifl, T. D. Märk, P. Scheier, D. Spångberg, A. Mauracher, and D. K. Bohme, Phys. Rev. Lett. 105, 243402 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.243402
65.
65. O. Echt, D. Kreisle, E. Recknagel, J. J. Saenz, R. Casero, and J. M. Soler, Phys. Rev. A 38, 3236 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3236
66.
66. H. Steger, J. deVries, B. Kamke, W. Kamke, and T. Drewello, Chem. Phys. Lett. 194, 452 (1992).
http://dx.doi.org/10.1016/0009-2614(92)86081-R
67.
67. A. J. Stace, J. Phys. Chem. A 106, 7993 (2002).
http://dx.doi.org/10.1021/jp020694t
68.
68. S. Denifl, F. Zappa, I. Mähr, F. Ferreira da Silva, A. Aleem, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, O. Echt, T. D. Märk, and P. Scheier, Angew. Chem., Int. Ed. 48, 8940 (2009);
http://dx.doi.org/10.1002/anie.200904381
68.S. Denifl, F. Zappa, I. Mähr, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, D. K. Bohme, O. Echt, T. D. Märk, and P. Scheier, J. Chem. Phys. 132, 234307 (2010);
http://dx.doi.org/10.1063/1.3436721
68.H. Schöbel, C. Leidlmair, P. Bartl, A. Aleem, M. Hager, O. Echt, T. D. Märk, and P. Scheier, Phys. Chem. Chem. Phys. 13, 1092 (2011).
http://dx.doi.org/10.1039/c0cp01268h
69.
69. C. Leidlmair, P. Bartl, H. Schöbel, S. Denifl, T. D. Märk, S. Yang, A. M. Ellis, and P. Scheier, ChemPhysChem 13, 469 (2011).
http://dx.doi.org/10.1002/cphc.201100880
70.
70. J. H. Kim, D. S. Peterka, C. C. Wang, and D. M. Neumark, J. Chem. Phys. 124, 214301 (2006);
http://dx.doi.org/10.1063/1.2202313
70.S. F. Yang, S. M. Brereton, M. D. Wheeler, and A. M. Ellis, J. Phys. Chem. A 110, 1791 (2006);
http://dx.doi.org/10.1021/jp0544437
70.A. Boatwright, J. Jeffs, and A. J. Stace, J. Phys. Chem. A 111, 7481 (2007);
http://dx.doi.org/10.1021/jp0713965
70.H. Schöbel, P. Bartl, C. Leidlmair, S. Denifl, O. Echt, T. D. Märk, and P. Scheier, Eur. Phys. J. D 63, 209 (2011).
http://dx.doi.org/10.1140/epjd/e2011-10619-1
71.
71. C. E. Klots, Z. Phys. D 21, 335 (1991);
http://dx.doi.org/10.1007/BF01438406
71.R. Casero and J. M. Soler, J. Chem. Phys. 95, 2927 (1991);
http://dx.doi.org/10.1063/1.460895
71.K. Hansen and U. Näher, Phys. Rev. A 60, 1240 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.1240
72.
72. C. E. Klots, J. Phys. Chem. 92, 5864 (1988).
http://dx.doi.org/10.1021/j100332a005
73.
73. C. Brechignac, P. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. 90, 1492 (1989);
http://dx.doi.org/10.1063/1.456675
73.U. Näher and K. Hansen, J. Chem. Phys. 101, 5367 (1994).
http://dx.doi.org/10.1063/1.467390
74.
74. J. Gspann, in Proceedings of the 12th International Conference on the Physics of Electronic and Atomic Collisions, edited by S. Datz (Gatlinburg, TN, 1981), p. 79.
75.
75. J. U. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).
http://dx.doi.org/10.1063/1.1357794
76.
76. S. Prasalovich, K. Hansen, M. Kjellberg, V. N. Popok, and E. E. B. Campbell, J. Chem. Phys. 123, 084317 (2005).
http://dx.doi.org/10.1063/1.2008948
77.
77. L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, and P. Scheier, Chem.-Eur. J. 18, 4411 (2012).
http://dx.doi.org/10.1002/chem.201103432
78.
78. The vibrational temperature of clusters in an evaporative ensemble is proportional to their binding energy, see Ref. 79. Helium droplets which have a dissociation energy of 0.62 meV cool to 0.37 K on a typical experimental time scale.33 A temperature of 30 K will thus be expected if the evaporation energy is 50 meV.
79.
79. C. E. Klots, Nature (London) 327, 222 (1987).
http://dx.doi.org/10.1038/327222a0
80.
80. U. Zimmermann, N. Malinowski, A. Burkhardt, and T. P. Martin, Carbon 33, 995 (1995).
http://dx.doi.org/10.1016/0008-6223(95)00028-C
81.
81. S. Zöttl, A. Kaiser, P. Bartl, C. Leidlmair, A. Mauracher, M. Probst, S. Denifl, O. Echt, and P. Scheier, J. Phys. Chem. Lett. 3, 2598 (2012).
http://dx.doi.org/10.1021/jz301106x
82.
82. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004).
83.
83. F. Calvo, Phys. Rev. B 85, 060502R (2012).
http://dx.doi.org/10.1103/PhysRevB.85.060502
84.
84. D. S. Greywall, Phys. Rev. B 47, 309 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.309
85.
85. J. de Vries, H. Steger, B. Kamke, C. Menzel, B. Weisser, W. Kamke, and I. V. Hertel, Chem. Phys. Lett. 188, 159 (1992).
http://dx.doi.org/10.1016/0009-2614(92)90001-4
86.
86. See http://webbook.nist.gov/ for NIST Chemistry WebBook, 2012.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/7/10.1063/1.4790403
Loading
/content/aip/journal/jcp/138/7/10.1063/1.4790403
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/7/10.1063/1.4790403
2013-02-19
2014-10-31

Abstract

Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)nHCm + where m = 60 or 70. Another series of even-numbered ions, (H2)nCm +, is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)n + is barely detectable. The ion series (H2)nHCm + and (H2)nCm + exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60 +; the corresponding value for C70 + is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60 + and (H2)2C60 +, and slightly above 70 meV for H2HC60 + and (H2)2HC60 +. The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/7/1.4790403.html;jsessionid=1rxpg6jjirw95.x-aip-live-02?itemId=/content/aip/journal/jcp/138/7/10.1063/1.4790403&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Adsorption of hydrogen on neutral and charged fullerene: Experiment and theory
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/7/10.1063/1.4790403
10.1063/1.4790403
SEARCH_EXPAND_ITEM