Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. W. Crabtree and M. S. Dresselhaus, MRS Bull. 33, 421 (2008).
2. L. Schlapbach and A. Züttel, Nature (London) 414, 353 (2001).
3. U.S. Department of Energy, Energy Efficiency and Renewable Energy/Hydrogen Storage, see, 2013.
4. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. 131, 8875 (2009);
4.H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, and O. M. Yaghi, Science 329, 424 (2010);
4.P. B. Sorokin, H. Lee, L. Y. Antipina, A. K. Singh, and B. I. Yakobson, Nano Lett. 11, 2660 (2011);
4.P. Jena, J. Phys. Chem. Lett. 2, 206 (2011);
4.N. Park, K. Choi, J. Hwang, D. W. Kim, D. O. Kim, and J. Ihm, Proc. Natl. Acad. Sci. U.S.A. 109, 19893 (2012).
5. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London) 386, 377 (1997);
5.Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 2307 (1999);
5.M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett. 100, 206806 (2008);
5.K. R. S. Chandrakumar and S. K. Ghosh, Nano Lett. 8, 13 (2008);
5.D. Saha and S. G. Deng, Carbon 48, 3471 (2010);
5.Y. Yamada, Y. Satake, K. Watanabe, Y. Yokoyama, R. Okada, and M. Sasaki, Phys. Rev. B 84, 235425 (2011);
5.P. Mauron, A. Remhof, A. Bliersbach, A. Borgschulte, A. Zuttel, D. Sheptyakov, M. Gaboardi, M. Choucair, D. Pontiroli, M. Aramini, A. Gorreri, and M. Ricco, Int. J. Hydrogen Energy 37, 14307 (2012).
6. M. Yoon, S. Y. Yang, E. Wang, and Z. Y. Zhang, Nano Lett. 7, 2578 (2007).
7. M. Bienfait, P. Zeppenfeld, N. Dupont-Pavlovsky, M. Muris, M. R. Johnson, T. Wilson, M. DePies, and O. E. Vilches, Phys. Rev. B 70, 035410 (2004).
8. H. Freimuth, H. Wiechert, and H. J. Lauter, Surf. Sci. 189, 548 (1987).
9. H. Freimuth, H. Wiechert, H. P. Schildberg, and H. J. Lauter, Phys. Rev. B 42, 587 (1990).
10. C. Leidlmair, Y. Wang, P. Bartl, H. Schöbel, S. Denifl, M. Probst, M. Alcamí, F. Martín, H. Zettergren, K. Hansen, O. Echt, and P. Scheier, Phys. Rev. Lett. 108, 076101 (2012).
11. H. Shin and Y. Kwon, J. Chem. Phys. 136, 064514 (2012).
12. C. Leidlmair, P. Bartl, H. Schöbel, S. Denifl, M. Probst, P. Scheier, and O. Echt, Astrophys. J. Lett. 738, L4 (2011).
13. Extensive hydrogenation of fullerene ions had been observed before,14,15 but those studies did not reveal the formation of distinct adsorption layers.
14. D. Schröder, D. K. Bohme, T. Weiske, and H. Schwarz, Int. J. Mass Spectrom. Ion Process. 116, R13 (1992);
14.S. Petrie, G. Javahery, J. Wang, and D. K. Bohme, J. Am. Chem. Soc. 114, 6268 (1992).
15. M. Farnik and J. Toennies, J. Chem. Phys. 122, 014307 (2005).
16. T. Oka, Proc. Natl. Acad. Sci. U.S.A. 103, 12235 (2006).
17. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985);
17.H. W. Kroto and M. Jura, Astron. Astrophys. 263, 275 (1992).
18. F. R. di Brozolo, T. E. Bunch, R. H. Fleming, and J. Macklin, Nature (London) 369, 37 (1994).
19. B. H. Foing and P. Ehrenfreund, Nature (London) 369, 296 (1994);
19.B. H. Foing and P. Ehrenfreund, Astron. Astrophys. 317, L59 (1997).
20. S. Petrie and D. K. Bohme, Astrophys. J. 540, 869 (2000).
21. G. H. Herbig, Astrophys. J. 542, 334 (2000);
21.A. Sassara, G. Zerza, M. Chergui, and S. Leach, Astrophys. J., Suppl. Ser. 135, 263 (2001).
22. X. K. Wang, X. W. Lin, M. Mesleh, M. F. Jarrold, V. P. Dravid, J. B. Ketterson, and R. P. H. Chang, J. Mater. Res. 10, 1977 (1995).
23. C. Jäger, F. Huisken, H. Mutschke, I. L. Jansa, and T. H. Henning, Astrophys. J. 696, 706 (2009).
24. J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, Science 329, 1180 (2010);
24.D. A. Garcia-Hernandez, A. Manchado, P. Garcia-Lario, L. Stanghellini, E. Villaver, R. A. Shaw, R. Szczerba, and J. V. Perea-Calderon, Astrophys. J. Lett. 724, L39 (2010);
24.J. Bernard-Salas, J. Cami, E. Peeters, A. P. Jones, E. R. Micelotta, and M. A. T. Groenewegen, Astrophys. J. 757, 41 (2012).
25. Y. Zhang and S. Kwok, Astrophys. J. 730, 126 (2011).
26. K. Sellgren, M. W. Werner, J. G. Ingalls, J. D. T. Smith, T. M. Carleton, and C. Joblin, Astrophys. J. Lett. 722, L54 (2010).
27. C. S. Jeffery, Astron. Astrophys. 299, 135 (1995);
27.D. A. Garcia-Hernandez, N. K. Rao, and D. L. Lambert, Astrophys. J. 729, 126 (2011).
28. K. R. G. Roberts, K. T. Smith, and P. J. Sarre, Mon. Not. R. Astron. Soc. 421, 3277 (2012).
29. T. P. Snow and B. J. McCall, Annu. Rev. Astron. Astrophys. 44, 367 (2006).
30. M. L. Heger, Lick Obs. Bull. 10, 146 (1922).
31. L. M. Hobbs, D. G. York, J. A. Thorburn, T. P. Snow, M. Bishof, S. D. Friedman, B. J. McCall, T. Oka, B. Rachford, P. Sonnentrucker, and D. E. Welty, Astrophys. J. 705, 32 (2009).
32. P. J. Sarre, J. Mol. Spectrosc. 238, 1 (2006).
33. J. P. Toennies and A. F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004).
34. L. An der Lan, P. Bartl, C. Leidlmair, H. Schöbel, R. Jochum, S. Denifl, T. D. Märk, A. M. Ellis, and P. Scheier, J. Chem. Phys. 135, 044309 (2011).
35. MATLAB R2011a, Mathworks, see
36. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009;
36.R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).
37. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
39. N. Sai, K. Leung, and J. R. Chelikowsky, Phys. Rev. B 83, 121309(R) (2011);
39.e-print arXiv:1103.1938v1.
40. C. Van Caillie and R. D. Amos, Chem. Phys. Lett. 328, 446 (2000).
41. S. Grimme, J. Comput. Chem. 27, 1787 (2006);
41.J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
42. S. E. Huber, S. Dalnodar, W. Kausch, S. Kimeswenger, and M. Probst, AIP Adv. 2, 032180 (2012);
42.M. P. Waller, H. Kruse, C. Muck-Lichtenfeld, and S. Grimme, Chem. Soc. Rev. 41, 3119 (2012);
42.Y. Zhao, X. J. Wu, J. L. Yang, and X. C. Zeng, Phys. Chem. Chem. Phys. 13, 11766 (2011).
43. See for atomic element data.
44. S. Jaksch, A. Mauracher, A. Bacher, S. Denifl, F. Ferreira da Silva, H. Schöbel, O. Echt, T. D. Märk, M. Probst, D. K. Bohme, and P. Scheier, J. Chem. Phys. 129, 224306 (2008);
44.P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, and O. Echt, ChemPhysChem 14, 227 (2012).
45. T. T. Vehvilainen, M. G. Ganchenkova, L. E. Oikkonen, and R. M. Nieminen, Phys. Rev. B 84, 085447 (2011).
46. C. C. Henderson, C. M. Rohlfing, and P. A. Cahill, Chem. Phys. Lett. 213, 383 (1993).
47. T. Korona, A. Hesselmann, and H. Dodziuk, J. Chem. Theory Comput. 5, 1585 (2009).
48. P. A. Denis, J. Phys. Chem. C 112, 2791 (2008).
49. K. A. Williams, B. K. Pradhan, P. C. Eklund, M. K. Kostov, and M. W. Cole, Phys. Rev. Lett. 88, 165502 (2002).
50. C. M. Brown, T. Yildirim, D. A. Neumann, M. J. Heben, T. Gennett, A. C. Dillon, J. L. Alleman, and J. E. Fischer, Chem. Phys. Lett. 329, 311 (2000).
51. J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lopez, and J. A. Alonso, J. Chem. Phys. 117, 2281 (2002).
52. I. Cabria, M. J. Lopez, and J. A. Alonso, Comput. Mater. Sci. 35, 238 (2006).
53. Y. Okamoto, J. Phys. Chem. A 105, 7634 (2001);
53.A. Ferre-Vilaplana, J. Chem. Phys. 122, 104709 (2005);
53.M. Rubes and O. Bludsky, ChemPhysChem 10, 1868 (2009).
54. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, and P. Jena, Nano Lett. 9, 1501 (2009);
54.T. X. Nguyen, J. S. Bae, Y. Wang, and S. K. Bhatia, Langmuir 25, 4314 (2009).
55. A. van Deursen and J. Reuss, Int. J. Mass Spectrom. Ion Phys. 11, 483 (1973);
55.Y. K. Bae, P. C. Cosby, and D. C. Lorents, Chem. Phys. Lett. 159, 214 (1989);
55.S. L. Anderson, T. Hirooka, P. W. Tiedemann, B. H. Mahan, and Y. T. Lee, J. Chem. Phys. 73, 4779 (1980).
56. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Heidelberg, 1985).
57. H. Tachikawa, Phys. Chem. Chem. Phys. 2, 4702 (2000).
58. Y. Ekinci, E. L. Knuth, and J. P. Toennies, J. Chem. Phys. 125, 133409 (2006).
59. W. K. Lewis, C. M. Lindsay, R. J. Bemish, and R. E. Miller, J. Am. Chem. Soc. 127, 7235 (2005);
59.A. M. Ellis and S. F. Yang, Phys. Rev. A 76, 032714 (2007);
59.O. Echt, T. D. Märk, and P. Scheier, in Handbook of Nanophysics, edited by K. Sattler (CRC, New York, 2010), Vol. 2;
59.B. Shepperson, J. Liu, A. M. Ellis, and S. F. Yang, J. Chem. Phys. 135, 041101 (2011).
60. Penning ionization will dominate if the neutral dopant is located at the surface of the helium droplet, or if the electron energy is below the 24.59 eV threshold for formation of He+.61
61. A. A. Scheidemann, V. V. Kresin, and H. Hess, J. Chem. Phys. 107, 2839 (1997);
61.L. An der Lan, P. Bartl, C. Leidlmair, H. Schöbel, S. Denifl, T. D. Märk, A. M. Ellis, and P. Scheier, Phys. Rev. B 85, 115414 (2012).
62. E. Loginov, L. F. Gomez, N. Chiang, A. Halder, N. Guggemos, V. V. Kresin, and A. F. Vilesov, Phys. Rev. Lett. 106, 233401 (2011).
63. R. K. Yoo, B. Ruscic, and J. Berkowitz, J. Chem. Phys. 96, 911 (1992).
64. H. Schöbel, P. Bartl, C. Leidlmair, M. Daxner, S. Zöttl, S. Denifl, T. D. Märk, P. Scheier, D. Spångberg, A. Mauracher, and D. K. Bohme, Phys. Rev. Lett. 105, 243402 (2010).
65. O. Echt, D. Kreisle, E. Recknagel, J. J. Saenz, R. Casero, and J. M. Soler, Phys. Rev. A 38, 3236 (1988).
66. H. Steger, J. deVries, B. Kamke, W. Kamke, and T. Drewello, Chem. Phys. Lett. 194, 452 (1992).
67. A. J. Stace, J. Phys. Chem. A 106, 7993 (2002).
68. S. Denifl, F. Zappa, I. Mähr, F. Ferreira da Silva, A. Aleem, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, O. Echt, T. D. Märk, and P. Scheier, Angew. Chem., Int. Ed. 48, 8940 (2009);
68.S. Denifl, F. Zappa, I. Mähr, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, D. K. Bohme, O. Echt, T. D. Märk, and P. Scheier, J. Chem. Phys. 132, 234307 (2010);
68.H. Schöbel, C. Leidlmair, P. Bartl, A. Aleem, M. Hager, O. Echt, T. D. Märk, and P. Scheier, Phys. Chem. Chem. Phys. 13, 1092 (2011).
69. C. Leidlmair, P. Bartl, H. Schöbel, S. Denifl, T. D. Märk, S. Yang, A. M. Ellis, and P. Scheier, ChemPhysChem 13, 469 (2011).
70. J. H. Kim, D. S. Peterka, C. C. Wang, and D. M. Neumark, J. Chem. Phys. 124, 214301 (2006);
70.S. F. Yang, S. M. Brereton, M. D. Wheeler, and A. M. Ellis, J. Phys. Chem. A 110, 1791 (2006);
70.A. Boatwright, J. Jeffs, and A. J. Stace, J. Phys. Chem. A 111, 7481 (2007);
70.H. Schöbel, P. Bartl, C. Leidlmair, S. Denifl, O. Echt, T. D. Märk, and P. Scheier, Eur. Phys. J. D 63, 209 (2011).
71. C. E. Klots, Z. Phys. D 21, 335 (1991);
71.R. Casero and J. M. Soler, J. Chem. Phys. 95, 2927 (1991);
71.K. Hansen and U. Näher, Phys. Rev. A 60, 1240 (1999).
72. C. E. Klots, J. Phys. Chem. 92, 5864 (1988).
73. C. Brechignac, P. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. 90, 1492 (1989);
73.U. Näher and K. Hansen, J. Chem. Phys. 101, 5367 (1994).
74. J. Gspann, in Proceedings of the 12th International Conference on the Physics of Electronic and Atomic Collisions, edited by S. Datz (Gatlinburg, TN, 1981), p. 79.
75. J. U. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).
76. S. Prasalovich, K. Hansen, M. Kjellberg, V. N. Popok, and E. E. B. Campbell, J. Chem. Phys. 123, 084317 (2005).
77. L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, and P. Scheier, Chem.-Eur. J. 18, 4411 (2012).
78. The vibrational temperature of clusters in an evaporative ensemble is proportional to their binding energy, see Ref. 79. Helium droplets which have a dissociation energy of 0.62 meV cool to 0.37 K on a typical experimental time scale.33 A temperature of 30 K will thus be expected if the evaporation energy is 50 meV.
79. C. E. Klots, Nature (London) 327, 222 (1987).
80. U. Zimmermann, N. Malinowski, A. Burkhardt, and T. P. Martin, Carbon 33, 995 (1995).
81. S. Zöttl, A. Kaiser, P. Bartl, C. Leidlmair, A. Mauracher, M. Probst, S. Denifl, O. Echt, and P. Scheier, J. Phys. Chem. Lett. 3, 2598 (2012).
82. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004).
83. F. Calvo, Phys. Rev. B 85, 060502R (2012).
84. D. S. Greywall, Phys. Rev. B 47, 309 (1993).
85. J. de Vries, H. Steger, B. Kamke, C. Menzel, B. Weisser, W. Kamke, and I. V. Hertel, Chem. Phys. Lett. 188, 159 (1992).
86. See for NIST Chemistry WebBook, 2012.

Data & Media loading...


Article metrics loading...



Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)nHCm + where m = 60 or 70. Another series of even-numbered ions, (H2)nCm +, is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)n + is barely detectable. The ion series (H2)nHCm + and (H2)nCm + exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60 +; the corresponding value for C70 + is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60 + and (H2)2C60 +, and slightly above 70 meV for H2HC60 + and (H2)2HC60 +. The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd