1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Origin of the contributions to DNA structure in phages
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/7/10.1063/1.4791708
1.
1. W. C. Earnshaw, J. King, S. C. Harrison, and F. A. Eiserling, Cell 14, 559 (1978).
http://dx.doi.org/10.1016/0092-8674(78)90242-8
2.
2. S. C. Riemer and V. A. Bloomfield, Biopolymers 17, 785794 (1978).
http://dx.doi.org/10.1002/bip.1978.360170317
3.
3. S. Tzlil, J. T. Kindt, W. M. Gelbart, and A. Ben-Shaul, Biophys. J. 84, 1616 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74971-6
4.
4. T. Odijk, Philos. Trans. R. Soc. London, Ser. A 362, 1497 (2004).
http://dx.doi.org/10.1098/rsta.2004.1385
5.
5. T. Odijk, Biophys. J. 75, 1223 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)74041-X
6.
6. P. K. Purohit, M. M. Inamdar, P. D. Grayson, T. M. Squires, J. Kondev, and R. Phillips, Biophys. J. 88, 851 (2005).
http://dx.doi.org/10.1529/biophysj.104.047134
7.
7. P. K. Purohit, J. Kondev, and R. Phillips, Proc. Natl. Acad. Sci. U.S.A. 100, 3173 (2003).
http://dx.doi.org/10.1073/pnas.0737893100
8.
8. H. G. Garcia, P. Grayson, L. Han, M. Inamdar, J. Kondev, P. C. Nelson, R. Phillips, J. Widom, and P. A. Wiggins, Biopolymers 85, 115 (2007).
http://dx.doi.org/10.1002/bip.20627
9.
9. J. Müller, S. Oehler, and B. Müller-Hill, J. Mol. Biol. 257, 21 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0143
10.
10. J. Tang, N. Olson, P. J. Jardine, S. Grimes, D. L. Anderson, and T. S. Baker, Structure 16, 935 (2008).
http://dx.doi.org/10.1016/j.str.2008.02.024
11.
11. J. E. Johnson and W. Chiu, Curr. Opin. Struct. Biol. 17, 237 (2007).
http://dx.doi.org/10.1016/j.sbi.2007.03.011
12.
12. W. Jiang, J. Chang, J. Jakana, P. Weigele, J. King, and W. Chiu, Nature (London) 439, 612 (2006).
http://dx.doi.org/10.1038/nature04487
13.
13. J. Chang, P. Weigele, J. King, W. Chiu, and W. Jiang, Structure 14, 1073 (2006).
http://dx.doi.org/10.1016/j.str.2006.05.007
14.
14. C. M. Knobler and W. M. Gelbart, Annu. Rev. Phys. Chem. 60, 367 (2009).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093728
15.
15. J. Tang, G. C. Lander, A. Olia, R. Li, S. Casjens, P. Prevelige, G. Cingolani, T. S. Baker, and J. E. Johnson, Structure 19, 496 (2011).
http://dx.doi.org/10.1016/j.str.2011.02.010
16.
16. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, Nature (London) 413, 748 (2001).
http://dx.doi.org/10.1038/35099581
17.
17. D. N. Fuller, D. M. Raymer, J. P. Rickgauer, R. M. Robertson, C. E. Catalano, D. L. Anderson, S. Grimes, and D. E. Smith, J. Mol. Biol. 373, 1113 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.09.011
18.
18. D. N. Fuller, J. P. Rickgauer, P. J. Jardine, S. Grimes, D. L. Anderson, and D. E. Smith, Proc. Natl. Acad. Sci. U.S.A. 104, 11245 (2007).
http://dx.doi.org/10.1073/pnas.0701323104
19.
19. A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 9292 (2003).
http://dx.doi.org/10.1073/pnas.1233721100
20.
20. A. Evilevitch, L. T. Fang, A. M. Yoffe, M. Castelnovo, D. C. Rau, V. A. Parsegian, W. M. Gelbart, and C. M. Knobler, Biophys. J. 94, 1110 (2008).
http://dx.doi.org/10.1529/biophysj.107.115345
21.
21. A. Evilevitch, W. H. Roos, I. L. Ivanovska, M. Jeembaeva, B. Jönsson, and G. J. L. Wuite, J. Mol. Biol. 405, 18 (2011).
http://dx.doi.org/10.1016/j.jmb.2010.10.039
22.
22. H. A. Lankes, C. N. Zanghi, K. Santos, C. Capella, C. M. P. Duke, and S. Dewhurst, J. Appl. Microbiol. 102, 1337 (2007).
http://dx.doi.org/10.1111/j.1365-2672.2006.03182.x
23.
23. M. E. Cerritelli, N. Cheng, A. H. Rosenberg, C. E. McPherson, F. P. Booy, and A. C. Steven, Cell 91, 271 (1997).
http://dx.doi.org/10.1016/S0092-8674(00)80409-2
24.
24. A. S. Petrov and S. C. Harvey, J. Struct. Biol. 174, 137 (2011).
http://dx.doi.org/10.1016/j.jsb.2010.11.007
25.
25. A. S. Petrov and S. C. Harvey, Structure 15, 21 (2007).
http://dx.doi.org/10.1016/j.str.2006.11.013
26.
26. A. S. Petrov and S. C. Harvey, Biophys. J. 95, 497 (2008).
http://dx.doi.org/10.1529/biophysj.108.131797
27.
27. E. V. Orlova and H. R. Saibil, in Methods in Enzymology, edited by G. J. Jensen (Academic, 2010), pp. 321341.
28.
28. J. Ambia-Garrido and B. M. Pettitt, Commun. Comput. Phys. 3, 1117 (2008).
29.
29. J. Ambia-Garrido, A. Vainrub, and B. M. Pettitt, Comput. Phys. Commun. 181, 20012007 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.08.029
30.
30. J. Ambia-Garrido, A. Vainrub, and B. Montgomery Pettitt, J. Phys.: Condens. Matter 23, 325101 (2011).
http://dx.doi.org/10.1088/0953-8984/23/32/325101
31.
31. E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Courier Dover, 1999).
32.
32. P. E. Smith, M. E. Holder, L. X. Dang, M. Feig, G. C. Lynch, K. Y. Wong, and B. M. Pettitt, Extended System Program (ESP) (University of Houston, 1996).
33.
33. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
34.
34. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
35.
35. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).
http://dx.doi.org/10.1002/jcc.20084
36.
36. C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 94, 6185 (1997).
http://dx.doi.org/10.1073/pnas.94.12.6185
37.
37. T. E. Cloutier and J. Widom, Mol. Cell 14, 355 (2004).
http://dx.doi.org/10.1016/S1097-2765(04)00210-2
38.
38. Q. Du, C. Smith, N. Shiffeldrim, M. Vologodskaia, and A. Vologodskii, Proc. Natl. Acad. Sci. U.S.A. 102, 5397 (2005).
http://dx.doi.org/10.1073/pnas.0500983102
39.
39. N. B. Becker and R. Everaers, Science 325, 538 (2009).
http://dx.doi.org/10.1126/science.1168786
40.
40. A. J. Mastroianni, D. A. Sivak, P. L. Geissler, and A. P. Alivisatos, Biophys. J. 97, 1408 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.06.031
41.
41. P. A. Wiggins, T. van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, and P. C. Nelson, Nat. Nanotechnol. 1, 137 (2006).
http://dx.doi.org/10.1038/nnano.2006.63
42.
42. R. Vafabakhsh and T. Ha, Science 337, 1097 (2012).
http://dx.doi.org/10.1126/science.1224139
43.
43. P. C. Nelson, Science 337, 1045 (2012).
http://dx.doi.org/10.1126/science.1227014
44.
44. G. L. Randall, L. Zechiedrich, and B. M. Pettitt, Nucleic Acids Res. 37, 5568 (2009).
http://dx.doi.org/10.1093/nar/gkp556
45.
45. F. Lankas, R. Lavery, and J. H. Maddocks, Structure 14, 1527 (2006).
http://dx.doi.org/10.1016/j.str.2006.08.004
46.
46. J. Yan and J. F. Marko, Phys. Rev. Lett. 93, 108108 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.108108
47.
47. J. S. Mitchell, C. A. Laughton, and S. A. Harris, Nucleic Acids Res. 39, 3928 (2011).
http://dx.doi.org/10.1093/nar/gkq1312
48.
48. S. A. Harris, C. A. Laughton, and T. B. Liverpool, Nucleic Acids Res. 36, 21 (2008).
http://dx.doi.org/10.1093/nar/gkm891
49.
49. J. M. Fogg, G. L. Randall, B. M. Pettitt, D. W. L. Sumners, S. A. Harris, and L. Zechiedrich, Q. Rev. Biophys. 45, 257 (2012).
http://dx.doi.org/10.1017/S0033583512000054
50.
50. C. L. Hetherington, A. Karunakaran, J. Schnitzbauer, P. Jardine, S. Grimes, D. Anderson, and C. Bustamante, Biophys. J. 96, 416a (2008).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/7/10.1063/1.4791708
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Comparison of density ring separation in cryo-EM asymmetric reconstruction of the P22 phage (top portion, grey) versus time-averaged density distributions over 100 ns simulation of unconnected segments (bottom portion, blue). (b) Same at lower contour levels.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Time-averaged density distribution over 100 ns simulation of a non-periodic cubic box at same density (same particle number, same available volume) as our model simulation of phage P22. (b) Close-up view of select densities near phage head within the cryo-EM asymmetric reconstruction of the P22 phage. 13

Loading

Article metrics loading...

/content/aip/journal/jcp/138/7/10.1063/1.4791708
2013-02-19
2014-04-19

Abstract

Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/7/1.4791708.html;jsessionid=8jhnq7js25qja.x-aip-live-06?itemId=/content/aip/journal/jcp/138/7/10.1063/1.4791708&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Origin of the contributions to DNA structure in phages
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/7/10.1063/1.4791708
10.1063/1.4791708
SEARCH_EXPAND_ITEM