1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The role of dimensionality in the decay of surface effects
Rent:
Rent this article for
USD
10.1063/1.4792643
/content/aip/journal/jcp/138/8/10.1063/1.4792643
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/8/10.1063/1.4792643
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Schematic representations of the tight-binding models. (a) A 1D material (linear model). (b) A 2D material. (c) A 3D material. (d) A 1D material (ladder model). In all cases there are two alternating types of sites, one with site energy α (blue circles) and the other with −α (green circles). The linear 1D, 2D, and 3D models alternate between two couplings β1 (black lines) and β2 (red lines). The ladder 1D model has three couplings: a “rung” coupling β1 (black lines) and two alternating “rail” couplings β2 (red) and β3 (orange).

Image of FIG. 2.
FIG. 2.

LDOSs for various layers (as labelled) of the linear 1D model. Red: α = 0.3 eV, β1 = −0.8 eV, and β2 = −1.3 eV. Blue: α = 0.3 eV, β1 = −1.3 eV, and β2 = −0.8 eV. When formation of the surface breaks the stronger coupling (|β2| > |β1|, red lines), a surface state appears in the odd layers as a broadened δ function at E = α. This surface state decays with increasing layer number while oscillations around the bulk limit appear in the bands. In agreement with previous studies, these oscillations do not quickly dampen and the LDOSs do not converge to the bulk.

Image of FIG. 3.
FIG. 3.

LDOSs for various layers (as labelled) of the ladder 1D model (α = 0.3 eV, β1 = −0.8 eV, β2 = −1.3 eV, and β3 = −0.8 eV). Similar to the linear 1D model, a surface state appears at E = α that decays with increasing layer number, disappearing by layer 20. Oscillations in the bands are also evident; however, they slowly dampen and allow convergence to the bulk limit. The ladder 1D model is less effectively 1D than the linear 1D model and although surface effects decay slowly, they decay more quickly than in the linear 1D model.

Image of FIG. 4.
FIG. 4.

LDOSs for various layers (as labelled) of the 2D model (α = 0.3 eV, β1 = −0.8 eV, and β2 = −1.3 eV). Similar to the 1D models, the surface state decays in ∼10 layers (most easily seen by comparing asymmetry in the valence and conduction bands). The LDOSs again oscillate around the bulk limit with increasing depth; however, they converge to the bulk limit much more quickly than in the 1D materials.

Image of FIG. 5.
FIG. 5.

LDOSs for various layers (as labelled) of the 3D model (α = 0.3 eV, β1 = −0.8 eV, and β2 = −1.3 eV). Similar to materials with other dimensionalities, the surface state decays in roughly 10 layers. Unlike the other materials, however, the LDOS oscillations significantly dampen in these initial layers and the bulk LDOS is essentially recovered by layer ∼10.

Image of FIG. 6.
FIG. 6.

Deviations between the bulk and nth layer LDOSs (δ n ) vs. layer (n). The circles are calculated values and the lines are the best-fit functions a/n b (for n sufficiently large). (a) Linear 1D material with a surface state (red lines in Fig. 2 ). (b) Linear 1D material without a surface state (blue lines in Fig. 2 ). (c) Ladder 1D material with parameters α = 0.3 eV, β1 = −0.8 eV, β2 = −1.3 eV, and β3 = −1.3 eV. (d) Ladder 1D material from Fig. 3 . (e) 2D material from Fig. 4 . (f) 3D material from Fig. 5 . The decay parameters b are (a) 0.00, (b) 0.00, (c) 0.21, (d) 0.26, (e) 0.63, and (f) 1.05. Surface effects decay more rapidly in materials of higher dimensionality.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/8/10.1063/1.4792643
2013-02-28
2014-04-24
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The role of dimensionality in the decay of surface effects
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/8/10.1063/1.4792643
10.1063/1.4792643
SEARCH_EXPAND_ITEM