1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Three-dimensional infrared spectroscopy of isotope-diluted ice Ih
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/1/10.1063/1.4812216
1.
1. K. L. Vodopyanov, J. Chem. Phys. 94, 53895393 (1991).
http://dx.doi.org/10.1063/1.460500
2.
2. S. Woutersen, U. Emmerichs, and H. J. Bakker, Science 278(5338), 658660 (1997).
http://dx.doi.org/10.1126/science.278.5338.658
3.
3. R. Laenen, C. Rauscher, and A. Laubereau, Phys. Rev. Lett. 80(12), 2622 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2622
4.
4. G. M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, and J.-C. Leicknam, Phys. Rev. Lett. 82(5), 10681071 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1068
5.
5. Z. Wang, A. Pakoulev, Y. Pang, and D. D. Dlott, J. Phys. Chem. A 108(42), 90549063 (2004).
http://dx.doi.org/10.1021/jp048545t
6.
6. T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, J. Phys. Chem. A 108, 1095710964 (2004).
http://dx.doi.org/10.1021/jp046711r
7.
7. D. Schwarzer, J. Lindner, and P. Vöhringer, J. Chem. Phys. 123(16), 161105 (2005).
http://dx.doi.org/10.1063/1.2110087
8.
8. J. Lindner, P. Vöhringer, M. S. Pshenichnikov, D. Cringus, D. A. Wiersma, and M. Mostovoy, Chem. Phys. Lett. 421(4–6), 329333 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.081
9.
9. S. Ashihara, N. Huse, A. Espagne, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 111, 743746 (2007).
http://dx.doi.org/10.1021/jp0676538
10.
10. A. Staib and J. T. Hynes, Chem. Phys. Lett. 204, 197205 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85627-Z
11.
11. R. Rey, K. B. Moller, and J. T. Hynes, Chem. Rev. 104, 19151928 (2004).
http://dx.doi.org/10.1021/cr020675f
12.
12. C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 117, 88478854 (2002).
http://dx.doi.org/10.1063/1.1514652
13.
13. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature (London) 434, 199202 (2005).
http://dx.doi.org/10.1038/nature03383
14.
14. D. Kraemer, M. L. Cowan, A. Paarmann, N. Huse, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Proc. Natl. Acad. Sci. U.S.A. 105(2), 437442 (2008).
http://dx.doi.org/10.1073/pnas.0705792105
15.
15. J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering, and T. Elsaesser, Phys. Rev. Lett. 87(2), 027401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.027401
16.
16. S. Yeremenko, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 369(1–2), 107113 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)02001-8
17.
17. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Science 301, 16981702 (2003).
http://dx.doi.org/10.1126/science.1087251
18.
18. J. B. Asbury, T. Steinel, K. Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, J. Chem. Phys. 121, 1243112446 (2004).
http://dx.doi.org/10.1063/1.1818107
19.
19. J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102(37), 1301913022 (2005).
http://dx.doi.org/10.1073/pnas.0505125102
20.
20. F. Perakis and P. Hamm, J. Phys. Chem. B 115, 52895293 (2011).
http://dx.doi.org/10.1021/jp1092288
21.
21. R. A. Nicodemus, S. A. Corcelli, J. L. Skinner, and A. Tokmakoff, J. Phys. Chem. B 115(18), 56045616 (2011).
http://dx.doi.org/10.1021/jp111434u
22.
22. E. T. J. Nibbering and T. Elsaesser, Chem. Rev. 104, 18871914 (2004).
http://dx.doi.org/10.1021/cr020694p
23.
23. S. T. Roberts, K. Ramasesha, and A. Tokmakoff, Acc. Chem. Res. 42, 12391249 (2009).
http://dx.doi.org/10.1021/ar900088g
24.
24. T. Elsaesser, Acc. Chem. Res. 42, 12201228 (2009).
http://dx.doi.org/10.1021/ar900006u
25.
25. T. Yagasaki and S. Saito, Acc. Chem. Res. 42(9), 12501258 (2009).
http://dx.doi.org/10.1021/ar900007s
26.
26. H. J. Bakker and J. L. Skinner, Chem. Rev. 110(3), 14981517 (2010).
http://dx.doi.org/10.1021/cr9001879
27.
27. C. G. Salzmann, P. G. Radaelli, E. Mayer, and J. L. Finney, Phys. Rev. Lett. 103, 105701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105701
28.
28. T. Loerting, K. Winkel, M. Seidl, M. Bauer, C. Mitterdorfer, P. H. Handle, C. G. Salzmann, E. Mayer, J. L. Finney, and D. T. Bowron, Phys. Chem. Chem. Phys. 13, 87838794 (2011).
http://dx.doi.org/10.1039/C0CP02600J
29.
29. P. V. Hobbs, Ice Physics (Oxford University Press, Oxford, 1974).
30.
30. C. Bäktorp, J. A. Poulsen, and G. Nyman, J. Phys. Chem. A 109(14), 31053110 (2005).
http://dx.doi.org/10.1021/jp044606b
31.
31. F. Li and J. L. Skinner, J. Chem. Phys. 133, 244504 (2010).
http://dx.doi.org/10.1063/1.3516460
32.
32. T. Yagasaki and S. Saito, J. Chem. Phys. 135(24), 244511 (2011).
http://dx.doi.org/10.1063/1.3671993
33.
33. L. Shi, S. M. Gruenbaum, and J. L. Skinner, J. Phys. Chem. B 116(47), 1382113830 (2012).
http://dx.doi.org/10.1021/jp3059239
34.
34. R. Laenen, C. Rauscher, and A. Laubereau, J. Phys. Chem. B 102(46), 93049311 (1998).
http://dx.doi.org/10.1021/jp980667w
35.
35. F. Perakis and P. Hamm, Phys. Chem. Chem. Phys. 14, 62506256 (2011).
http://dx.doi.org/10.1039/C2CP23710E
36.
36. G. Seifert, K. Weidlich, and H. Graener, Phys. Rev. B 56, R14231 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R14231
37.
37. S. Woutersen, U. Emmerichs, H. Nienhuys, and H. J. Bakker, Phys. Rev. Lett. 81, 1106 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1106
38.
38. A. M. Dokter and H. J. Bakker, J. Chem. Phys. 128, 024502 (2008).
http://dx.doi.org/10.1063/1.2820765
39.
39. R. L. A. Timmer and H. J. Bakker, J. Phys. Chem. A 114, 41484155 (2010).
http://dx.doi.org/10.1021/jp911726s
40.
40. F. Perakis, S. Widmer, and P. Hamm, J. Chem. Phys. 134, 204505 (2011).
http://dx.doi.org/10.1063/1.3592561
41.
41. H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, Nature (London) 439, 183186 (2006).
http://dx.doi.org/10.1038/nature04415
42.
42. Y. Marechal and A. Witkowski, J. Chem. Phys. 48, 36973705 (1968).
http://dx.doi.org/10.1063/1.1669673
43.
43. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011).
44.
44. R. R. Ernst, Angew. Chem., Int. Ed. 31, 805823 (1992).
http://dx.doi.org/10.1002/anie.199208053
45.
45. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, J. Chem. Phys. 131, 144510 (2009).
http://dx.doi.org/10.1063/1.3245964
46.
46. J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, J. Chem. Phys. 135, 044510 (2011).
http://dx.doi.org/10.1063/1.3613679
47.
47. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, Phys. Rev. Lett. 108, 193201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.193201
48.
48. A. F. Fidler, E. Harel, and G. S. Engel, J. Phys. Chem. Lett. 1(19), 28762880 (2010).
http://dx.doi.org/10.1021/jz101064j
49.
49. Z. Zhang, K. L. Wells, and H.-S. Tan, Opt. Lett. 37(24), 50585060 (2012).
http://dx.doi.org/10.1364/OL.37.005058
50.
50. E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.067402
51.
51. F. Ding and M. T. Zanni, Chem. Phys. 341(1–3), 95105 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.06.010
52.
52. S. Garrett-Roe and P. Hamm, J. Chem. Phys. 130, 1645109 (2009).
http://dx.doi.org/10.1063/1.3122982
53.
53. S. Garrett-Roe and P. Hamm, Acc. Chem. Res. 42, 14121422 (2009).
http://dx.doi.org/10.1021/ar900028k
54.
54. S. Garrett-Roe, F. Perakis, F. Rao, and P. Hamm, J. Phys. Chem. B 115, 6976 (2011).
http://dx.doi.org/10.1021/jp201989s
55.
55. M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90(4), 047401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.047401
56.
56. J. C. Kirkwood, D. J. Ulness, and A. C. Albrecht, J. Phys. Chem. A 104(18), 41674173 (2000).
http://dx.doi.org/10.1021/jp992542c
57.
57. P. M. Donaldson, R. Guo, F. Fournier, E. M. Gardner, L. M. C. Barter, C. J. Barnett, I. R. Gould, D. R. Klug, D. J. Palmer, and K. R. Willison, J. Chem. Phys. 127(11), 114513 (2007).
http://dx.doi.org/10.1063/1.2771176
58.
58. J. C. Wright, Annu. Rev. Phys. Chem. 62, 209230 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103551
59.
59. P. Hamm, R. A. Kaindl, and J. Stenger, Opt. Lett. 25, 1798 (2000).
http://dx.doi.org/10.1364/OL.25.001798
60.
60. V. Volkov, R. Schanz, and P. Hamm, Opt. Lett. 30(15), 20102012 (2005).
http://dx.doi.org/10.1364/OL.30.002010
61.
61. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, Opt. Lett. 33(22), 26652667 (2008).
http://dx.doi.org/10.1364/OL.33.002665
62.
62. C. T. Middleton, D. B. Strasfeld, and M. T. Zanni, Opt. Express 17(17), 1452614533 (2009).
http://dx.doi.org/10.1364/OE.17.014526
63.
63. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, Opt. Express 18, 2706727078 (2010).
http://dx.doi.org/10.1364/OE.18.027067
64.
64. E. R. Lippincott and R. Schroeder, J. Chem. Phys. 23, 1099 (1955).
http://dx.doi.org/10.1063/1.1742196
65.
65. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.1, Gaussian Inc., Wallingford, CT, 2009.
66.
66. Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 131(5), 054511 (2009).
http://dx.doi.org/10.1063/1.3196178
67.
67. Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134(9), 094509109450912 (2011).
http://dx.doi.org/10.1063/1.3554905
68.
68. H. Liu, Y. Wang, and J. M. Bowman, J. Phys. Chem. Lett. 3, 36713676 (2012).
http://dx.doi.org/10.1021/jz3016777
69.
69. A. R. Leach, Molecular Modelling, Principles and Applications (Pearson Education Limited, Essex, England, 2001).
70.
70. G. C. Groenenboom and D. T. Colbert, J. Chem. Phys. 99(12), 96819696 (1993).
http://dx.doi.org/10.1063/1.465450
71.
71. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
72.
72. S.-C. Park, K.-H. Jung, and H. Kang, J. Chem. Phys. 121(6), 27652774 (2004).
http://dx.doi.org/10.1063/1.1770548
73.
73. J. C. Werhahn, S. Pandelov, S. S. Xantheas, and H. Iglev, J. Phys. Chem. Lett. 2(13), 16331638 (2011).
http://dx.doi.org/10.1021/jz200591v
74.
74. H. J. Bakker and H. Nienhuys, Science 297, 587590 (2002).
http://dx.doi.org/10.1126/science.1073298
75.
75. B. S. Alexandrov, V. G. Stanev, A. R. Bishop, and K. Rasmussen, Phys. Rev. E 86(6), 061913 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061913
76.
76. M. Gühr, M. Bargheer, and N. Schwentner, Phys. Rev. Lett. 91(8), 085504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.085504
77.
77. C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 119(3), 16231633 (2003).
http://dx.doi.org/10.1063/1.1582173
78.
78. D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100(31), 1273512756 (1996).
http://dx.doi.org/10.1021/jp960698w
79.
79. R. Marquardt and M. Quack, J. Chem. Phys. 95(7), 48544876 (1991).
http://dx.doi.org/10.1063/1.461703
80.
80. M. Gruebele and P. G. Wolynes, Acc. Chem. Res. 37, 261267 (2004).
http://dx.doi.org/10.1021/ar030230t
81.
81. M. V. Vener, Chem. Phys. Lett. 244, 8992 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00912-N
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/1/10.1063/1.4812216
Loading
/content/aip/journal/jcp/139/1/10.1063/1.4812216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/1/10.1063/1.4812216
2013-07-07
2014-08-20

Abstract

Using three-dimensional infrared (3D-IR) spectroscopy, we investigate the vibrational dynamics of isotope-diluted ice Ih. By probing the OD stretch mode of HOD in HO, we observe an extremely rapid decay (≈200 fs) of the population from the second vibrational excited state. Quantum simulations based on a two-dimensional Lippincott-Schroeder potential agree nearly quantitatively with the experimental 3D-IR lineshapes and dynamics. The model suggests that energy dissipation is enhanced due to nonadiabatic effects between vibrational states, which arise from strong mode-mixing between the OD stretch mode with lattice degrees of freedom. Furthermore, we compare the simulation results to based potentials, in which the hydrogen bond anharmonicity is too small to reproduce the experimental 3D-IR spectra. We thus conclude that the Lippincott-Schroeder potential effectively coalesces many degrees of freedom of the crystal into one intermolecular coordinate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/1/1.4812216.html;jsessionid=14dhdgfscuq86.x-aip-live-06?itemId=/content/aip/journal/jcp/139/1/10.1063/1.4812216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional infrared spectroscopy of isotope-diluted ice Ih
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/1/10.1063/1.4812216
10.1063/1.4812216
SEARCH_EXPAND_ITEM