Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/10/10.1063/1.4818747
1.
1. R. Becker and W. Döring, Ann. Phys. 416, 719752 (1935).
http://dx.doi.org/10.1002/andp.19354160806
2.
2. A. J. C. Ladd and L. V. Woodcock, Chem. Phys. Lett. 51, 155 (1977).
http://dx.doi.org/10.1016/0009-2614(77)85375-X
3.
3. U. Landman, W. D. Luedtke, R. N. Barnett, C. L. Cleveland, M. W. Ribarsky, E. Arnold, S. Ramesh, H. Baumgart, A. Martinez, and B. Khan, Phys. Rev. Lett. 56, 155 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.155
4.
4. A. Mori, R. Manabe, and K. Nishioka, Phys. Rev. E 51, R3831 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.R3831
5.
5. A. Kyrlidis and R. A. Brown, Phys. Rev. E 51, 5832 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.5832
6.
6. P. M. Agrawal, B. M. Rice, and D. L. Thompson, J. Chem. Phys. 119, 9617 (2003).
http://dx.doi.org/10.1063/1.1612915
7.
7. J. R. Morris and X. Song, J. Chem. Phys. 116, 9352 (2002).
http://dx.doi.org/10.1063/1.1474581
8.
8. J. J. Hoyt and M. Asta, Phys. Rev. B 65, 214106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.214106
9.
9. R. Sibug-Aga and B. B. Laird, J. Chem. Phys. 116, 3410 (2002).
http://dx.doi.org/10.1063/1.1436078
10.
10. R. G. Fernández, J. L. Abascal, and C. Vega, J. Chem. Phys. 124, 144506 (2006).
http://dx.doi.org/10.1063/1.2183308
11.
11. C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya, J. Phys.: Condens. Matter 20, 153101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/15/153101
12.
12. N. S. Weingarten, W. D. Mattson, and B. M. Rice, J. Appl. Phys. 106, 063524 (2009).
http://dx.doi.org/10.1063/1.3213342
13.
13. T. Zykova-Timan, J. Horbach, and K. Binder, J. Chem. Phys. 133, 014705 (2010).
http://dx.doi.org/10.1063/1.3455504
14.
14. U. R. Pedersen and P. Harrowell, J. Phys. Chem. B 115, 14205 (2011).
http://dx.doi.org/10.1021/jp205013w
15.
15. U. R. Pedersen, F. Hummel, G. Kresse, G. Kahl, and C. Dellago, “Computing Gibbs free energy differences by interface pinning,” Phys. Rev. B (in press).
16.
16. J. E. Lennard-Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).
http://dx.doi.org/10.1098/rspa.1924.0082
17.
17. D. P. Woodruff, The Solid-Liquid Interface (Cambridge University Press, 1973).
18.
18. J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17, 338 (1949).
http://dx.doi.org/10.1063/1.1747248
19.
19. A. Tröster, C. Dellago, and W. Schranz, Phys. Rev. B 72, 094103 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.094103
20.
20. A. Tröster and C. Dellago, Phys. Rev. E 71, 066705 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.066705
21.
21. D. Frenkel and B. Smit, in Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., edited by D. Frenkel, M. Klein, M. Parrinello, and B. Smit, Computational Science Series Vol. 1 (Academic Press, 2002).
22.
22. M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulations, Oxford Graduate Texts Vol. 1 (Oxford University Press, 2010).
23.
23. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.784
24.
24. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
25.
25. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
26.
26. S. Nose, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
27.
27. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
28.
28. J. M. G. Sousa, A. L. Ferreira, and M. A. Barroso, J. Chem. Phys. 136, 174502 (2012).
http://dx.doi.org/10.1063/1.4707746
29.
29. N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
30.
30. T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 134, 164505 (2011).
http://dx.doi.org/10.1063/1.3582900
31.
31. T. S. Ingebrigtsen, L. Bøhling, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 136, 061102 (2012).
http://dx.doi.org/10.1063/1.3685804
32.
32. T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.011011
33.
33. U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
34.
34. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
35.
35. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008).
http://dx.doi.org/10.1063/1.2982249
36.
36. W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).
http://dx.doi.org/10.1063/1.1676196
37.
37. U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 105, 157801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.157801
38.
38. L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and T. B. Schrøder, New J. Phys. 14, 113035 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113035
39.
39. S. A. Khrapak and G. E. Morfill, J. Chem. Phys. 134, 094108 (2011).
http://dx.doi.org/10.1063/1.3561698
40.
40. S. A. Khrapak, M. Chaudhuri, and G. E. Morfill, J. Chem. Phys. 134, 241101 (2011).
http://dx.doi.org/10.1063/1.3605659
41.
41. Y. Rosenfeld, Chem. Phys. Lett. 38, 591593 (1976).
http://dx.doi.org/10.1016/0009-2614(76)80048-6
42.
42. E. A. Mastny and J. J. de Pablo, J. Chem. Phys. 127, 104504 (2007).
http://dx.doi.org/10.1063/1.2753149
43.
43. J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998).
http://dx.doi.org/10.1063/1.477787
44.
44. H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
http://dx.doi.org/10.1063/1.457480
45.
45. N. Wiener, Acta Math. 55, 117 (1930).
http://dx.doi.org/10.1007/BF02546511
46.
46. M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
http://dx.doi.org/10.1063/1.2978177
47.
47. B. Widom, J. Chem. Phys. 39, 2808 (1963).
http://dx.doi.org/10.1063/1.1734110
48.
48. G. E. Norman and V. S. Filinov, High Temp. 7, 216 (1969).
49.
49. W. G. Hoover and F. H. Reee, J. Chem. Phys. 49, 3609 (1968).
http://dx.doi.org/10.1063/1.1670641
50.
50. J. Q. Broughton and G. H. Gilmer, J. Chem. Phys. 79, 5095 (1983).
http://dx.doi.org/10.1063/1.445633
51.
51. J. Q. Broughton and G. H. Gilmer, J. Chem. Phys. 84, 5749 (1986).
http://dx.doi.org/10.1063/1.449883
52.
52. S. Angioletti-Uberti, M. Ceriotti, P. D. Lee, and M. W. Finnis, Phys. Rev. B 81, 125416 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125416
53.
53. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
54.
54. L. A. Fernández, V. Martín-Mayor, B. Seoane, and P. Verrocchio, Phys. Rev. Lett. 108, 165701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.165701
55.
55. J. J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5530
56.
56. W. J. Briels and H. L. Tepper, Phys. Rev. Lett. 79, 5074 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5074
57.
57. H. L. Tepper and W. J. Briels, J. Chem. Phys. 116, 5186 (2002).
http://dx.doi.org/10.1063/1.1452110
58.
58. D. Frenkel, Eur. Phys. J. Plus 128, 10 (2013).
http://dx.doi.org/10.1140/epjp/i2013-13010-8
59.
59. In this paper, we have only considered single component systems. For multi-component systems, the NpzT ensemble must be replaced by another ensemble (since it is only defined for single component systems). As an example, for a two component system one may consider the NANBpzT ensemble or the μAμBVT ensemble. We leave such investigations for a future study.
60.
60. T. Neuhaus and J. S. Hager, J. Stat. Phys. 113, 47 (2003).
http://dx.doi.org/10.1023/A:1025718703965
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/10/10.1063/1.4818747
Loading
/content/aip/journal/jcp/139/10/10.1063/1.4818747
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/10/10.1063/1.4818747
2013-09-09
2016-09-29

Abstract

Computing phase diagrams of model systems is an essential part of computational condensed matter physics. In this paper, we discuss in detail the interface pinning (IP) method for calculation of the Gibbs free energy difference between a solid and a liquid. This is done in a single equilibrium simulation by applying a harmonic field that biases the system towards two-phase configurations. The Gibbs free energy difference between the phases is determined from the average force that the applied field exerts on the system. As a test system, we study the Lennard-Jones model. It is shown that the coexistence line can be computed efficiently to a high precision when the IP method is combined with the Newton-Raphson method for finding roots. Statistical and systematic errors are investigated. Advantages and drawbacks of the IP method are discussed. The high pressure part of the temperature-density coexistence region is outlined by isomorphs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/10/1.4818747.html;jsessionid=NByPjGmcnYbYskN6NChrzH3q.x-aip-live-02?itemId=/content/aip/journal/jcp/139/10/10.1063/1.4818747&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/10/10.1063/1.4818747&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/10/10.1063/1.4818747'
Right1,Right2,Right3,