Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Nanoalloys: From Fundamentals to Emergent Applications, edited by F. Calvo (Elsevier, Amsterdam, 2013).
2. Metal Clusters and Nanoalloys: From Modeling to Applications, edited by M. M. Mariscal, O. A. Oviedo, and E. P. M. Leiva (Springer, Berlin, 2013).
3. J. Jellinek and E. B. Krissinel, Chem. Phys. Lett. 258, 283 (1996).
4. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).
5. J. Marian, B. D. Wirth, A. Caro, B. Sadigh, G. R. Odette, J. M. Perlado, and T. Diaz de la Rubia, Phys. Rev. B 65, 144102 (2002).
6. A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).
7. T. Niiyama, S.-I. Sawada, K. S. Ikeda, and Y. Shimizu, Chem. Phys. Lett. 503, 252 (2011).
8. F. Calvo, E. Cottancin, and M. Broyer, Phys. Rev. B 77, 121406R (2008).
9. E. Cottancin, M. Gaudry, M. Pellarin, J. Lermé, L. Arnaud, J.-R. Huntzinger, J.-L. Vialle, M. Treilleux, P. Mélinon, J.-L. Rousset, and M. Broyer, Eur. Phys. J. D 24, 111 (2003).
10. M. Gaudry, E. Cottancin, M. Pellarin, J. Lermé, L. Arnaud, J.-R. Huntzinger, J.-L. Vialle, M. Broyer, J.-L. Rousset, M. Treilleux, and P. Mélinon, Phys. Rev. B 67, 155409 (2003).
11. D. J. Wales, Mol. Phys. 100, 3285 (2002);
11.D. J. Wales, Mol. Phys. 102, 891 (2004).
12. D. J. Wales, Int. Rev. Phys. Chem. 25, 237 (2006).
13. R. Ferrando, A. Fortunelli, and R. L. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008).
14. F. R. Negreiros, F. Taherkhani, G. Parsafar, A. Caro, and A. Fortunelli, J. Chem. Phys. 137, 194302 (2012).
15. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004).
16.See supplementary material at for the disconnectivity graphs of the two clusters, the details and parameters of the potential, and additional properties of the two rearrangement pathways. Animations of these two rearrangements are also provided. [Supplementary Material]
17. V. Bonačić-Koutecký, J. Burda, R. Mitrić, M. Ge, G. Zampella, and P. Fantucci, J. Chem. Phys. 117, 3120 (2002);
17.L. O. Paz-Borbon, R. L. Johnston, G. Barcaro, and A. Fortunelli, J. Chem. Phys. 128, 134517 (2008);
17.L.-L. Wang, T. L. Tan, and D. D. Johnson, Phys. Rev. B 86, 035438 (2012).
18. M. Cerbelaud, R. Ferrando, G. Barcaro, and A. Fortunelli, Phys. Chem. Chem. Phys. 13, 10232 (2011).
19. T. B. Massalski, J. L. Murray, L. J. Bernett, and H. Baker, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986), Vol. 1.
20. D. Belić, R. L. Chantry, Z. Y. Li, and S. A. Brown, Appl. Phys. Lett. 99, 171914 (2011).
21. E. W. Dijkstra, Numer. Math. 1, 269 (1959).
22. D. J. Wales, PATHSAMPLE: A program for generating connected stationary point databases and extracting global kinetics, see
23. D. A. Ferrer, L. A. Diaz-Torres, S. Wua, and M. Jose-Yacaman, Catal. Today 147, 211 (2009);
23.A. Mayoral, A. Vazquez-Duran, D. A. Ferrer, J. M. Montejano-Carrizales, and M. Jose-Yacaman, Cryst. Eng. Comm. 12, 1090 (2010).
24. C. Wang, S. Peng, R. Chan, and S. Sun, Small 5, 567 (2009).
25. M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, Small 7, 230 (2011).
26. W. G. Menezes, V. Zielasek, G. I. Dzhardimalieva, S. I. Pomogailo, K. Thiel, D. Wohrle, A. Hartwig, and M. Baumer, Nanoscale 4, 1658 (2012).
27. T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman II, and J. D. Gezelteer, J. Am. Chem. Soc. 124, 11989 (2002).
28. Z. Zhang, T. M. Nenoff, K. Leung, S. R. Ferreira, J. Y. Huang, D. T. Berry, P. P. Provencio, and R. Stumpf, J. Phys. Chem. C 114, 14309 (2010);
28.C. Srivastava, S. Chithra, K. D. Malviya, S. K. Sinha, and K. Chattopadhyay, Acta Mater. 59, 6501 (2011).
29. M. Tsuji, S. Hikino, M. Matsunaga, Y. Sano, T. Hashizume, and H. Kawazumi, Mat. Lett. 64, 1793 (2010);
29.L. Xia, X. Hua, X. Kanga, H. Zhao, M. Sun, and X. Cihen, Colloids Surf., A 367, 96 (2010).
30. C. Srivastava, Mater. Lett. 70, 122 (2012);
30.B. M. Mundotiya and C. Srivastava, Electrochem. Solid-State Lett. 15, K41 (2012).
31. M. Molayem, V. G. Grigoryan, and M. Springborg, J. Phys. Chem. C 115, 7179 (2011).
32. D. J. Wales and L. J. Munro, J. Phys. Chem. 100, 2053 (1996).

Data & Media loading...


Article metrics loading...



The energy landscape and kinetics of medium-sized Ag-Au and Ag-Ni nanoalloy particles are explored via a discrete path sampling approach, focusing on rearrangements connecting regions differing in chemical order. The highly miscible Ag Au supports a large number of nearly degenerate icosahedral homotops. The transformation from reverse core-shell to core-shell involves large displacements away from the icosahedron through elementary steps corresponding to surface diffusion and vacancy formation. The immiscible Ag Ni naturally forms an asymmetric core-shell structure, and about 10 eV is required to extrude the nickel core to the surface. The corresponding transformation occurs via a long and smooth sequence of surface displacements. For both systems the rearrangement kinetics exhibit Arrhenius behavior. These results are discussed in the light of experimental observations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd