Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/11/10.1063/1.4821582
1.
1. Nanoalloys: From Fundamentals to Emergent Applications, edited by F. Calvo (Elsevier, Amsterdam, 2013).
2.
2. Metal Clusters and Nanoalloys: From Modeling to Applications, edited by M. M. Mariscal, O. A. Oviedo, and E. P. M. Leiva (Springer, Berlin, 2013).
3.
3. J. Jellinek and E. B. Krissinel, Chem. Phys. Lett. 258, 283 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00636-7
4.
4. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).
5.
5. J. Marian, B. D. Wirth, A. Caro, B. Sadigh, G. R. Odette, J. M. Perlado, and T. Diaz de la Rubia, Phys. Rev. B 65, 144102 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144102
6.
6. A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).
http://dx.doi.org/10.1146/annurev.matsci.32.112601.141541
7.
7. T. Niiyama, S.-I. Sawada, K. S. Ikeda, and Y. Shimizu, Chem. Phys. Lett. 503, 252 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.01.004
8.
8. F. Calvo, E. Cottancin, and M. Broyer, Phys. Rev. B 77, 121406R (2008).
http://dx.doi.org/10.1103/PhysRevB.77.121406
9.
9. E. Cottancin, M. Gaudry, M. Pellarin, J. Lermé, L. Arnaud, J.-R. Huntzinger, J.-L. Vialle, M. Treilleux, P. Mélinon, J.-L. Rousset, and M. Broyer, Eur. Phys. J. D 24, 111 (2003).
http://dx.doi.org/10.1140/epjd/e2003-00156-y
10.
10. M. Gaudry, E. Cottancin, M. Pellarin, J. Lermé, L. Arnaud, J.-R. Huntzinger, J.-L. Vialle, M. Broyer, J.-L. Rousset, M. Treilleux, and P. Mélinon, Phys. Rev. B 67, 155409 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155409
11.
11. D. J. Wales, Mol. Phys. 100, 3285 (2002);
http://dx.doi.org/10.1080/00268970210162691
11.D. J. Wales, Mol. Phys. 102, 891 (2004).
http://dx.doi.org/10.1080/00268970410001703363
12.
12. D. J. Wales, Int. Rev. Phys. Chem. 25, 237 (2006).
http://dx.doi.org/10.1080/01442350600676921
13.
13. R. Ferrando, A. Fortunelli, and R. L. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008).
http://dx.doi.org/10.1039/b709000e
14.
14. F. R. Negreiros, F. Taherkhani, G. Parsafar, A. Caro, and A. Fortunelli, J. Chem. Phys. 137, 194302 (2012).
http://dx.doi.org/10.1063/1.4759507
15.
15. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.105503
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4821582 for the disconnectivity graphs of the two clusters, the details and parameters of the potential, and additional properties of the two rearrangement pathways. Animations of these two rearrangements are also provided. [Supplementary Material]
17.
17. V. Bonačić-Koutecký, J. Burda, R. Mitrić, M. Ge, G. Zampella, and P. Fantucci, J. Chem. Phys. 117, 3120 (2002);
http://dx.doi.org/10.1063/1.1492800
17.L. O. Paz-Borbon, R. L. Johnston, G. Barcaro, and A. Fortunelli, J. Chem. Phys. 128, 134517 (2008);
http://dx.doi.org/10.1063/1.2897435
17.L.-L. Wang, T. L. Tan, and D. D. Johnson, Phys. Rev. B 86, 035438 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035438
18.
18. M. Cerbelaud, R. Ferrando, G. Barcaro, and A. Fortunelli, Phys. Chem. Chem. Phys. 13, 10232 (2011).
http://dx.doi.org/10.1039/c0cp02845b
19.
19. T. B. Massalski, J. L. Murray, L. J. Bernett, and H. Baker, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986), Vol. 1.
20.
20. D. Belić, R. L. Chantry, Z. Y. Li, and S. A. Brown, Appl. Phys. Lett. 99, 171914 (2011).
http://dx.doi.org/10.1063/1.3656244
21.
21. E. W. Dijkstra, Numer. Math. 1, 269 (1959).
http://dx.doi.org/10.1007/BF01386390
22.
22. D. J. Wales, PATHSAMPLE: A program for generating connected stationary point databases and extracting global kinetics, see http://www-wales.ch.cam.ac.uk/software.html.
23.
23. D. A. Ferrer, L. A. Diaz-Torres, S. Wua, and M. Jose-Yacaman, Catal. Today 147, 211 (2009);
http://dx.doi.org/10.1016/j.cattod.2009.02.047
23.A. Mayoral, A. Vazquez-Duran, D. A. Ferrer, J. M. Montejano-Carrizales, and M. Jose-Yacaman, Cryst. Eng. Comm. 12, 1090 (2010).
http://dx.doi.org/10.1039/b914749g
24.
24. C. Wang, S. Peng, R. Chan, and S. Sun, Small 5, 567 (2009).
http://dx.doi.org/10.1002/smll.200801169
25.
25. M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, Small 7, 230 (2011).
http://dx.doi.org/10.1002/smll.201001138
26.
26. W. G. Menezes, V. Zielasek, G. I. Dzhardimalieva, S. I. Pomogailo, K. Thiel, D. Wohrle, A. Hartwig, and M. Baumer, Nanoscale 4, 1658 (2012).
http://dx.doi.org/10.1039/c2nr11082b
27.
27. T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman II, and J. D. Gezelteer, J. Am. Chem. Soc. 124, 11989 (2002).
http://dx.doi.org/10.1021/ja026764r
28.
28. Z. Zhang, T. M. Nenoff, K. Leung, S. R. Ferreira, J. Y. Huang, D. T. Berry, P. P. Provencio, and R. Stumpf, J. Phys. Chem. C 114, 14309 (2010);
http://dx.doi.org/10.1021/jp911947v
28.C. Srivastava, S. Chithra, K. D. Malviya, S. K. Sinha, and K. Chattopadhyay, Acta Mater. 59, 6501 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.07.022
29.
29. M. Tsuji, S. Hikino, M. Matsunaga, Y. Sano, T. Hashizume, and H. Kawazumi, Mat. Lett. 64, 1793 (2010);
http://dx.doi.org/10.1016/j.matlet.2010.05.032
29.L. Xia, X. Hua, X. Kanga, H. Zhao, M. Sun, and X. Cihen, Colloids Surf., A 367, 96 (2010).
http://dx.doi.org/10.1016/j.colsurfa.2010.06.020
30.
30. C. Srivastava, Mater. Lett. 70, 122 (2012);
http://dx.doi.org/10.1016/j.matlet.2011.11.079
30.B. M. Mundotiya and C. Srivastava, Electrochem. Solid-State Lett. 15, K41 (2012).
http://dx.doi.org/10.1149/2.esl120008
31.
31. M. Molayem, V. G. Grigoryan, and M. Springborg, J. Phys. Chem. C 115, 7179 (2011).
http://dx.doi.org/10.1021/jp1094678
32.
32. D. J. Wales and L. J. Munro, J. Phys. Chem. 100, 2053 (1996).
http://dx.doi.org/10.1021/jp952521s
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/11/10.1063/1.4821582
Loading
/content/aip/journal/jcp/139/11/10.1063/1.4821582
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/11/10.1063/1.4821582
2013-09-17
2016-09-28

Abstract

The energy landscape and kinetics of medium-sized Ag-Au and Ag-Ni nanoalloy particles are explored via a discrete path sampling approach, focusing on rearrangements connecting regions differing in chemical order. The highly miscible Ag Au supports a large number of nearly degenerate icosahedral homotops. The transformation from reverse core-shell to core-shell involves large displacements away from the icosahedron through elementary steps corresponding to surface diffusion and vacancy formation. The immiscible Ag Ni naturally forms an asymmetric core-shell structure, and about 10 eV is required to extrude the nickel core to the surface. The corresponding transformation occurs via a long and smooth sequence of surface displacements. For both systems the rearrangement kinetics exhibit Arrhenius behavior. These results are discussed in the light of experimental observations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/11/1.4821582.html;jsessionid=RtocVUHQq9mYLO0I8dv8mJr_.x-aip-live-02?itemId=/content/aip/journal/jcp/139/11/10.1063/1.4821582&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/11/10.1063/1.4821582&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/11/10.1063/1.4821582'
Right1,Right2,Right3,