1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Statistical physics of self-replication
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/12/10.1063/1.4818538
1.
1. C. W. Gardiner, Handbook of Stochastic Methods, 3rd ed. (Springer, 2003).
2.
2. G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.2721
3.
3. R. A. Blythe, Phys. Rev. Lett. 100, 010601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.010601
4.
4. A. Gomez-Marin, J. M. Parrondo, and C. Van den Broeck, Phys. Rev. E 78, 011107 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.011107
5.
5. G. Verley, R. Chétrite, and D. Lacoste, Phys. Rev. Lett. 108, 120601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.120601
6.
6. R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
http://dx.doi.org/10.1147/rd.53.0183
7.
7. M. A. Nowak, Trends Ecol. Evol. 7, 118 (1992).
http://dx.doi.org/10.1016/0169-5347(92)90145-2
8.
8. D. Andrieux and P. Gaspard, Proc. Natl. Acad. Sci. U.S.A. 105, 9516 (2008).
http://dx.doi.org/10.1073/pnas.0802049105
9.
9. T. A. Lincoln and G. F. Joyce, Science 323, 1229 (2009).
http://dx.doi.org/10.1126/science.1167856
10.
10. J. E. Thompson, T. G. Kutateladze, M. C. Schuster, F. D. Venegas, J. M. Messmore, and R. T. Raines, Bioorg. Chem. 23, 471 (1995).
http://dx.doi.org/10.1006/bioo.1995.1033
11.
11. C. A. Minetti, D. P. Remeta, H. Miller, C. A. Gelfand, G. E. Plum, A. P. Grollman, and K. J. Breslauer, Proc. Natl. Acad. Sci. U.S.A. 100, 14719 (2003).
http://dx.doi.org/10.1073/pnas.2336142100
12.
12. H. J. Woo, R. Vijaya Satya, and J. Reifman, PLoS Comput. Biol. 8, e1002534 (2012).
http://dx.doi.org/10.1371/journal.pcbi.1002534
13.
13. G. K. Schroeder, C. Lad, P. Wyman, N. H. Williams, and R. Wolfenden, Proc. Natl. Acad. Sci. U.S.A. 103, 4052 (2006).
http://dx.doi.org/10.1073/pnas.0510879103
14.
14. D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, Science 318, 1121 (2007).
http://dx.doi.org/10.1126/science.1148532
15.
15. W. Gilbert, Nature (London) 319, 618 (1986).
http://dx.doi.org/10.1038/319618a0
16.
16. Z. Kelman and M. O'Donnell, Annu. Rev. Biochem. 64, 171 (1995).
http://dx.doi.org/10.1146/annurev.bi.64.070195.001131
17.
17. H. P. Rothbaum and H. M. Stone, J. Bacteriol. 81, 172 (1961).
18.
18. P. Wang, L. Robert, J. Pelletier, W. L. Dang, F. Taddei, A. Wright, and S. Jun, Curr. Biol. 20, 1099 (2010).
http://dx.doi.org/10.1016/j.cub.2010.04.045
19.
19. U. von Stockar, T. Maskow, J. Liu, I. W. Marison, and R. Patino, J. Biotechnol. 121, 517 (2006).
http://dx.doi.org/10.1016/j.jbiotec.2005.08.012
20.
20. T. Hatano and S. Sasa, Phys. Rev. Lett. 86, 3463 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3463
21.
21. D. E. Chang, D. J. Smalley, and T. Conway, Mol. Microbiol. 45, 289 (2002).
http://dx.doi.org/10.1046/j.1365-2958.2002.03001.x
22.
22. D. Brune and S. Kim, Proc. Natl. Acad. Sci. U.S.A. 90, 3835 (1993).
http://dx.doi.org/10.1073/pnas.90.9.3835
23.
23. S. C. Blacklow, R. T. Raines, W. A. Lim, P. D. Zamore, and J. R. Knowles, Biochemistry 27, 1158 (1988).
http://dx.doi.org/10.1021/bi00404a013
24.
24. F. C. Neidhardt, E. coli and Salmonella: Cellular and Molecular Biology (ASM Press, 1990), Vol. 1.
25.
25. C. L. Cooney, D. I. Wang, and R. I. Mateles, Biotechnol. Bioeng. 11, 269 (1969).
http://dx.doi.org/10.1002/bit.260110302
26.
26. A. Radzicka and R. Wolfenden, J. Am. Chem. Soc. 118, 6105 (1996).
http://dx.doi.org/10.1021/ja954077c
27.
27. C. G. Kurland and M. Ehrenberg, Annu. Rev. Biophys. Biophys. Chem. 16, 291 (1987).
http://dx.doi.org/10.1146/annurev.bb.16.060187.001451
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/12/10.1063/1.4818538
Loading
/content/aip/journal/jcp/139/12/10.1063/1.4818538
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/12/10.1063/1.4818538
2013-08-21
2014-07-25

Abstract

Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/12/1.4818538.html;jsessionid=20s47u9jmt9bb.x-aip-live-02?itemId=/content/aip/journal/jcp/139/12/10.1063/1.4818538&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Statistical physics of self-replication
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/12/10.1063/1.4818538
10.1063/1.4818538
SEARCH_EXPAND_ITEM