Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. M. L. Billas, A. Chatelain, and W. A. de Heer, Science 265, 1682 (1994).
2. D. K. Böhme and H. Schwarz, Angew. Chem., Int. Ed. 44, 2336 (2005).
3. G. von Helden, M. T. Hsu, P. R. Kemper, and M. T. Bowers, J. Chem. Phys. 95, 3835 (1991).
4. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).
5. D. Schooss, M. N. Blom, J. H. Parks, B. von Issendorff, H. Haberland, and M. M. Kappes, Nano Lett. 5, 1972 (2005).
6. K. J. Taylor, C. L. Pettiettehall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 96, 3319 (1992).
7. H. Häkkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A 107, 6168 (2003).
8. M. B. Knickelbein and S. Yang, J. Chem. Phys. 93, 5760 (1990).
9. M. B. Knickelbein and W. J. C. Menezes, Phys. Rev. Lett. 69, 1046 (1992).
10. A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, Phys. Rev. Lett. 93, 023401 (2004).
11. A. Fielicke, C. Ratsch, G. von Helden, and G. Meijer, J. Chem. Phys. 122, 091105 (2005).
12. G. von Helden, I. Holleman, G. M. H. Knippels, A. F. G. van der Meer, and G. Meijer, Phys. Rev. Lett. 79, 5234 (1997).
13. G. von Helden, I. Holleman, M. Putter, A. J. A. van Roij, and G. Meijer, Chem. Phys. Lett. 299, 171 (1999).
14. D. van Heijnsbergen, G. von Helden, M. A. Duncan, A. van Roij, and G. Meijer, Phys. Rev. Lett. 83, 4983 (1999).
15. D. van Heijnsbergen, A. Fielicke, G. Meijer, and G. von Helden, Phys. Rev. Lett. 89, 013401 (2002).
16. G. von Helden, D. van Heijnsbergen, and G. Meijer, J. Phys. Chem. A 107, 1671 (2003).
17. J. M. Bakker, V. J. F. Lapoutre, B. Redlich, J. Oomens, B. G. Sartakov, A. Fielicke, G. von Helden, G. Meijer, and A. F. G. van der Meer, J. Chem. Phys. 132, 074305 (2010).
18. M. Haertelt, V. J. F. Lapoutre, J. M. Bakker, B. Redlich, A. Fielicke, and G. Meijer, J. Phys. Chem. Lett. 2, 1720 (2011).
19. H. Kietzmann, J. Morenzin, P. S. Bechthold, G. Ganteför, and W. Eberhardt, J. Chem. Phys. 109, 2275 (1998).
20. T. Leisner, K. Athanassenas, O. Echt, O. Kandler, D. Kreisle, and E. Recknagel, Z. Phys. D: At., Mol. Clusters 20, 127 (1991).
21. A. Amrein, R. Simpson, and P. Hackett, J. Chem. Phys. 95, 1781 (1991).
22. K. Athanassenas, T. Leisner, U. Frenzel, and D. Kreisle, Ber. Bunsenges. Phys. Chem. 96, 1192 (1992).
23. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981).
24. V. E. Bondybey and J. H. English, J. Chem. Phys. 74, 6978 (1981).
25. M. A. Duncan, Rev. Sci. Instrum. 83, 041101 (2012).
26. A. Fielicke, C. Ratsch, G. von Helden, and G. Meijer, J. Chem. Phys. 127, 234306 (2007).
27. J. Oomens, B. G. Sartakov, G. Meijer, and G. von Helden, Int. J. Mass Spectrom. 254, 1 (2006).
28. J. M. Bakker, T. Besson, J. Lemaire, D. Scuderi, and P. Maitre, J. Phys. Chem. A 111, 13415 (2007).
29. P. V. Nhat and M. T. Nguyen, J. Phys. Chem. A 116, 7405 (2012).
30. J. G. Black, E. Yablonovitch, N. Bloembergen, and S. Mukamel, Phys. Rev. Lett. 38, 1131 (1977).
31. S. S. Alimpiev, B. O. Zikrin, B. G. Sartakov, and E. M. Khokhlov, Sov. Phys. JETP 56, 943 (1982).
32. V. Bagratashvili, V. S. Letokhov, A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Academic Publishers, Harwood, 1985).

Data & Media loading...


Article metrics loading...



The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb ( = 5–20) over the 200–350 cm−1 spectral range. The IR resonance-enhanced multiple photon ionization spectra obtained this way are in good agreement with those measured using IR photodissociation of neutral Nb -Ar clusters. An investigation of the factors determining the applicability of this technique identifies the internal energy threshold towards thermionic emission in combination with a minimum required photon flux that rapidly grows as a function of excitation wavelength.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd