Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/14/10.1063/1.4820487
1.
1. Atoms and Molecules in Laser and External Fields, edited by M. Mohan (Alpha Science Ltd., Oxford, UK, 2008).
2.
2. P. Schmelcher and W. E. Schweizer, Atoms and Molecules in Strong External Fields (Plenum Press, New York, 2010).
3.
3. S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2355
4.
4. R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1500
5.
5. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
http://dx.doi.org/10.1126/science.259.5101.1581
6.
6. Laser Control and Manipulation of Molecules, ACS Symposium Series, edited by A. D. Bandrauk, Y. Fujimura, and R. J. Gordon (Oxford University Press, Oxford, 2002).
7.
7. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley - Inter, New York, 2003).
8.
8. M. Dantus and V. V. Lozovoy, Chem. Rev. 104, 1813 (2004).
http://dx.doi.org/10.1021/cr020668r
9.
9. V. S. Letokhov, Laser Control of Atoms and Molecules (Oxford University Press, Oxford, UK, 2007).
10.
10. M. Y. Ivanov, D. R. Matusek, and J. S. Wright, Chem. Phys. Lett. 255, 232 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00402-2
11.
11. D. R. Matusek, M. Y. Ivanov, and J. S. Wright, Chem. Phys. Lett. 258, 255 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00638-0
12.
12. M. Y. Ivanov, D. R. Matusek, and J. S. Wright, Phys. Rev. A 54, 5159 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.5159
13.
13. A. D. Bandrauk, E. S. Sedik, and C. F. Matta, Mol. Phys. 104, 95 (2006).
http://dx.doi.org/10.1080/00268970500273983
14.
14. A. D. Bandrauk, E. S. Sedik, and C. F. Matta, J. Chem. Phys. 121, 7764 (2004).
http://dx.doi.org/10.1063/1.1793931
15.
15. A. A. Arabi and C. F. Matta, Phys. Chem. Chem. Phys. 13, 13738 (2011).
http://dx.doi.org/10.1039/c1cp20175a
16.
16. I. T. Suydam, C. D. Snow, V. S. Pande, and S. G. Boxer, Science 313, 200 (2006);
http://dx.doi.org/10.1126/science.1127159
16.I. T. Suydam, C. D. Snow, V. S. Pande, and S. G. Boxer, Science 313, 1887 (2006) (erratum).
http://dx.doi.org/10.1126/science.313.5795.1887a
17.
17. H. Lehle, J. M. Kriegl, K. Neienhaus, P. Deng, S. Fengler, and G. U. Nienhaus, Biophys. J. 88, 1978 (2005).
http://dx.doi.org/10.1529/biophysj.104.048140
18.
18. L. Xu, A. E. Cohen, and S. G. Boxer, Biochemistry 50, 8311 (2011).
http://dx.doi.org/10.1021/bi200930f
19.
19. J.-H. Choi, K.-I. Oh, H. Lee, C. Lee, and M. Cho, J. Chem. Phys. 128, 134506 (2008).
http://dx.doi.org/10.1063/1.2844787
20.
20. X. Wang, X. He, and J. Z. H. Zhang, J. Phys. Chem. A 117, 60156023 (2013).
http://dx.doi.org/10.1021/jp312063h
21.
21. D. J. Sandberg, A. N. Rudnitskaya, and J. A. Gascón, J. Chem. Theory Comput. 8, 2817 (2012).
http://dx.doi.org/10.1021/ct300409t
22.
22. M. A. Spackman, P. Munshi, and D. Jayatilaka, Chem. Phys. Lett. 443, 87 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.06.058
23.
23. S. Shaik, S. P. de Visser, and D. Kumar, J. Am. Chem. Soc. 126, 11746 (2004).
http://dx.doi.org/10.1021/ja047432k
24.
24. Y. A. Hong, J. R. Hahn, and H. Kanga, J. Chem. Phys. 108, 4367 (1998).
http://dx.doi.org/10.1063/1.475847
25.
25. S. Franzen, R. F. Goldstein, and S. G. Boxer, J. Phys. Chem. 94, 5135 (1990).
http://dx.doi.org/10.1021/j100375a068
26.
26. A. Gopher, Y. Blatt, M. Schonfeld, M. Y. Okamura, G. Feher, and M. Montal, Biophys. J. 48, 311 (1985).
http://dx.doi.org/10.1016/S0006-3495(85)83784-X
27.
27. Z. D. Popovic, G. J. Kovacs, P. S. Vincett, G. Alegria, and P. L. Dutton, Chem. Phys. 110, 227 (1986).
http://dx.doi.org/10.1016/0301-0104(86)87079-3
28.
28. P. M. Moroney, T. A. Scholes, and P. C. Hinkle, Biochemistry 23, 4991 (1984).
http://dx.doi.org/10.1021/bi00316a025
29.
29. S. G. Gorfman, V. G. Tsirelson, and U. Pietscha, Acta Cryst. A 61, 387 (2005).
http://dx.doi.org/10.1107/S0108767305010044
30.
30. H. Graafsma, J. Majewski, D. Cahen, and P. Coppens, J. Solid State Chem. 105, 520 (1993).
http://dx.doi.org/10.1006/jssc.1993.1244
31.
31. H. Graafsma, G. W. J. C. Heunen, and C. Schulze, J. Appl. Cryst. 31, 414 (1998).
http://dx.doi.org/10.1107/S0021889897014933
32.
32. J. Stahn, A. Pucher, T. Geue, A. Daniel, and U. Pietsch, Europhys. Lett. 44, 714 (1998).
http://dx.doi.org/10.1209/epl/i1998-00530-3
33.
33. J. Stahn, U. Pietsch, P. Blaha, and K. Schwarz, Phys. Rev. B 63, 165205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165205
34.
34. N. K. Hansen, P. Fertey, and R. Guillot, Acta Cryst. A 60, 465 (2004).
http://dx.doi.org/10.1107/S0108767304016897
35.
35. R. Guillot, P. Fertey, N. K. Hansen, P. Alle, E. Elkaim, and C. Lecomte, Eur. Phys. J. B 42, 373 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00393-4
36.
36. V. G. Tsirelson, S. V. Gorfmana, and U. Pietschb, Acta Crystallogr., Sect. A: Found. Crystallogr. A 59, 221 (2003).
http://dx.doi.org/10.1107/S0108767303004689
37.
37. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).
http://dx.doi.org/10.1063/1.453520
38.
38. A. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
39.
39. C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
40.
40. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.
41.
41. J. B. Foresman and A. Frisch, Exploring Chemistry With Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, 1996).
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.4820487 for plots and tables of all studied response properties as functions of the applied fields for all nine studied molecules at both the QCISD and DFT-B3LYP levels of theory. [Supplementary Material]
43.
43. I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009).
44.
44. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 89, 7382 (1988).
http://dx.doi.org/10.1063/1.455269
45.
45. G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
http://dx.doi.org/10.1063/1.443164
46.
46. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
47.
47. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, Inc., New York, 1989).
48.
48. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
http://dx.doi.org/10.1063/1.475428
49.
49. K. Hermansson, Chem. Phys. Lett. 233, 376 (1995).
http://dx.doi.org/10.1016/0009-2614(94)01458-8
50.
50. P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1259
51.
51. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, New York, 1965).
52.
52. M. Gruebele and A. H. Zewail, Phys. Today 43(5), 24 (1990).
http://dx.doi.org/10.1063/1.881233
53.
53. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960).
54.
54. J. W. Hovick and J. C. Poler, J. Chem. Educ. 82, 889 (2005).
http://dx.doi.org/10.1021/ed082p889
55.
55. C. A. Coulson, Electricity (Oliver and Boyd, London, 1961).
56.
56. C. F. Matta and R. J. Gillespie, J. Chem. Educ. 79, 1141 (2002).
http://dx.doi.org/10.1021/ed079p1141
57.
57. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, UK, 1990).
58.
58. T. A. Keith, in The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, edited by C. F. Matta and R. J. Boyd (Wiley-VCH, Weinheim, 2007).
59.
59. R. F. W. Bader and C. F. Matta, Int. J. Quantum Chem. 85, 592 (2001).
http://dx.doi.org/10.1002/qua.1540
60.
60. C. F. Matta, S. Sowlati-Hashjin, and A. D. Bandrauk, J. Phys. Chem. A 117, 7468 (2013).
http://dx.doi.org/10.1021/jp401555h
61.
61. D. M. Bishop, B. Lam, and S. T. Epstein, J. Chem. Phys. 88, 337 (1988).
http://dx.doi.org/10.1063/1.454605
62.
62. A. D. Buckingham and B. J. Orr, Q. Rev., Chem. Soc. 21, 195 (1967).
http://dx.doi.org/10.1039/qr9672100195
63.
63. B. Delley, J. Mol. Struct.: THEOCHEM 434, 229 (1998).
http://dx.doi.org/10.1016/S0166-1280(98)00111-0
64.
64. P. Morse, Phys. Rev. 34, 57 (1929).
http://dx.doi.org/10.1103/PhysRev.34.57
65.
65. B. A. Hess, Jr., L. J. Schaad, P. Carsky, and R. Zahradnik, Chem. Rev. 86, 709 (1986).
http://dx.doi.org/10.1021/cr00074a004
66.
66. P. L. Polavarapu, J. Phys. Chem. 94, 8106 (1990).
http://dx.doi.org/10.1021/j100384a024
67.
67. T. L. Cottrell, The Strength of Chemical Bonds, 2nd ed. (Butterworths, London, 1958).
68.
68.NIST WebBook (The National Institute of Standards and Technology, Washington, DC, 2013), see http://webbook.nist.gov.
69.
69. D. R. Lide, CRC Handbook of Chemistry and Physics, 87th ed. (CRC Press, 2006).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/14/10.1063/1.4820487
Loading
/content/aip/journal/jcp/139/14/10.1063/1.4820487
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/14/10.1063/1.4820487
2013-10-07
2016-09-30

Abstract

It is shown that the response of molecular properties of diatomics such as the total energy, the bond length, and the vibrational Stark shift to an external homogenous electric field (EF) can be predicted from field-free observable properties such as the equilibrium bond length, the bond dissociation energy, the polarizability and dipole moment functions, and the vibrational frequency. Delley [J. Mol. Struct.: THEOCHEM434, 229 (1998)] suggested to approximate the potential energy surface under an EF by a Morse function augmented with a EF term proportional to the internuclear separation. In this work, this term is replaced by the expression of the field-induced energy change which yields a field-perturbed Morse potential that tends to a constant asymptotic limit when the EF term itself become proportional to the sum of the polarizabilities of the separated atoms. The model is validated by comparison with direct calculations on nine diatomics, five homo-nuclear (H, N, O, F, and Cl) and four hetero-nuclear (HF, HCl, CO, and NO), covering a range and combinations of dipole moments and polarizabilities. Calculations were conducted at the quadratic configuration interaction with single and double excitations (QCISD) and density functional theory (DFT)-B3LYP levels of theory using the 6-311++G(3,2) basis set. All results agree closely at the two levels of theory except for the Stark effect of NO which is not correctly predicted by QCISD calculations as further calculations, including at the coupled cluster with single and double excitation (CCSD) level of theory, demonstrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/14/1.4820487.html;jsessionid=lMaCDCCaxORNKEJGdf76aPnW.x-aip-live-03?itemId=/content/aip/journal/jcp/139/14/10.1063/1.4820487&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/14/10.1063/1.4820487&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/14/10.1063/1.4820487'
Right1,Right2,Right3,