Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. G. Calvert, R. Atkinson, J. A. Kerr, S. Madronich, G. K. Moortgat, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of the Alkenes (Oxford University Press, Oxford, 2000).
2. D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
3. R. Criegee, Angew. Chem., Int. Ed. 14, 745 (1975).
4. O. Horie and G. K. Moortgat, Acc. Chem. Res. 31, 387 (1998).
5. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
6. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 14, 10391 (2012).
7. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
8. L. Vereecken, H. Harder, and A. Novelli, Phys. Chem. Chem. Phys. 14, 14682 (2012).
9. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
10. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
11. J. M. Anglada, J. Gonzalez, and M. Torrent-Sucarrat, Phys. Chem. Chem. Phys. 13, 13034 (2011).
12. P. Aplincourt, E. Henon, F. Bohr, and M. F. Ruiz-Lopez, Chem. Phys. 285, 221 (2002).
13. D. Cremer, J. Gauss, E. Kraka, J. F. Stanton, and R. J. Bartlett, Chem. Phys. Lett. 209, 547 (1993).
14. J. M. Anglada, J. M. Bofill, S. Olivella, and A. Solé, J. Am. Chem. Soc. 118, 4636 (1996).
15. M. T. Nguyen, T. L. Nguyen, V. T. Ngan, and H. M. T. Nguyen, Chem. Phys. Lett. 448, 183 (2007).
16. C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc. 130, 11883 (2008).
17. N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys. 13, 10848 (2011).
18. S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, Phys. Rev. A 43, 4702 (1991).
19. J. H. Lehman, H. Li, and M. I. Lester, “Ion imaging studies of the photodissociation dynamics of CH2I2 at 248 nm,” Chem. Phys. Lett. (submitted).
20. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
21. K. S. Dooley, J. N. Geidosch, and S. W. North, Chem. Phys. Lett. 457, 303 (2008).
22.See supplementary material at for the characteristics of each TKER distribution. [Supplementary Material]
23. B. J. Whitaker, Imaging in Molecular Dynamics Technology and Applications (Cambridge University Press, 2003).
24. W. R. Wadt and W. A. Goddard, J. Am. Chem. Soc. 97, 3004 (1975).
25. B. J. Ratliff, C. C. Womack, X. N. Tang, W. M. Landau, L. J. Butler, and D. E. Szpunar, J. Phys. Chem. A 114, 4934 (2010).
26. M. Nakajima and Y. Endo, J. Chem. Phys. 139, 101103 (2013).
27. L. V. Gurvich, Pure Appl. Chem. 61, 1027 (1989).
28. C. E. Moore, in CRC Series in Evaluated Data in Atomic Physics, edited by J. W. Gallagher (CRC Press, Boca Raton, FL, 1993), p. 339.
29. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see
30. Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
31. T. Nakanaga, S. Kondo, and S. Saeki, J. Chem. Phys. 76, 3860 (1982).
32. J. Matthews, A. Sinha, and J. S. Francisco, J. Chem. Phys. 122, 221101 (2005).
33. R. Gutbrod, E. Kraka, R. N. Schindler, and D. Cremer, J. Am. Chem. Soc. 119, 7330 (1997).
34. Y. Matsumi and M. Kawasaki, Chem. Rev. 103, 4767 (2003).

Data & Media loading...


Article metrics loading...



The velocity and angular distributions of O 1D photofragments arising from UV excitation of the CHOO intermediate on the 1A′ ← 1A′ transition are characterized using velocity map ion imaging. The anisotropic angular distribution yields the orientation of the transition dipole moment, which reflects the π* ← π character of the electronic transition associated with the COO group. The total kinetic energy release distributions obtained at several photolysis wavelengths provide detail on the internal energy distribution of the formaldehyde cofragments and the dissociation energy of CHOO 1A′ to O 1D + HCO 1A. A common termination of the total kinetic energy distributions, after accounting for the different excitation energies, gives an upper limit for the CHOO 1A′ dissociation energy of ≤ 54 kcal mol−1, which is compared with theoretical predictions including high level multi-reference calculations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd