Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/14/10.1063/1.4824655
1.
1. J. G. Calvert, R. Atkinson, J. A. Kerr, S. Madronich, G. K. Moortgat, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of the Alkenes (Oxford University Press, Oxford, 2000).
2.
2. D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
http://dx.doi.org/10.1039/b704260b
3.
3. R. Criegee, Angew. Chem., Int. Ed. 14, 745 (1975).
http://dx.doi.org/10.1002/anie.197507451
4.
4. O. Horie and G. K. Moortgat, Acc. Chem. Res. 31, 387 (1998).
http://dx.doi.org/10.1021/ar9702740
5.
5. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
http://dx.doi.org/10.1126/science.1213229
6.
6. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 14, 10391 (2012).
http://dx.doi.org/10.1039/c2cp40294g
7.
7. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
http://dx.doi.org/10.1126/science.1234689
8.
8. L. Vereecken, H. Harder, and A. Novelli, Phys. Chem. Chem. Phys. 14, 14682 (2012).
http://dx.doi.org/10.1039/c2cp42300f
9.
9. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
http://dx.doi.org/10.1021/ja310603j
10.
10. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
http://dx.doi.org/10.1063/1.4810865
11.
11. J. M. Anglada, J. Gonzalez, and M. Torrent-Sucarrat, Phys. Chem. Chem. Phys. 13, 13034 (2011).
http://dx.doi.org/10.1039/c1cp20872a
12.
12. P. Aplincourt, E. Henon, F. Bohr, and M. F. Ruiz-Lopez, Chem. Phys. 285, 221 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00804-2
13.
13. D. Cremer, J. Gauss, E. Kraka, J. F. Stanton, and R. J. Bartlett, Chem. Phys. Lett. 209, 547 (1993).
http://dx.doi.org/10.1016/0009-2614(93)80131-8
14.
14. J. M. Anglada, J. M. Bofill, S. Olivella, and A. Solé, J. Am. Chem. Soc. 118, 4636 (1996).
http://dx.doi.org/10.1021/ja953858a
15.
15. M. T. Nguyen, T. L. Nguyen, V. T. Ngan, and H. M. T. Nguyen, Chem. Phys. Lett. 448, 183 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.10.033
16.
16. C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc. 130, 11883 (2008).
http://dx.doi.org/10.1021/ja804165q
17.
17. N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys. 13, 10848 (2011).
http://dx.doi.org/10.1039/c0cp02564j
18.
18. S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, Phys. Rev. A 43, 4702 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.4702
19.
19. J. H. Lehman, H. Li, and M. I. Lester, “Ion imaging studies of the photodissociation dynamics of CH2I2 at 248 nm,” Chem. Phys. Lett. (submitted).
20.
20. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
http://dx.doi.org/10.1063/1.1482156
21.
21. K. S. Dooley, J. N. Geidosch, and S. W. North, Chem. Phys. Lett. 457, 303 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.009
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4824655 for the characteristics of each TKER distribution. [Supplementary Material]
23.
23. B. J. Whitaker, Imaging in Molecular Dynamics Technology and Applications (Cambridge University Press, 2003).
24.
24. W. R. Wadt and W. A. Goddard, J. Am. Chem. Soc. 97, 3004 (1975).
http://dx.doi.org/10.1021/ja00844a016
25.
25. B. J. Ratliff, C. C. Womack, X. N. Tang, W. M. Landau, L. J. Butler, and D. E. Szpunar, J. Phys. Chem. A 114, 4934 (2010).
http://dx.doi.org/10.1021/jp911739a
26.
26. M. Nakajima and Y. Endo, J. Chem. Phys. 139, 101103 (2013).
http://dx.doi.org/10.1063/1.4821165
27.
27. L. V. Gurvich, Pure Appl. Chem. 61, 1027 (1989).
http://dx.doi.org/10.1351/pac198961061027
28.
28. C. E. Moore, in CRC Series in Evaluated Data in Atomic Physics, edited by J. W. Gallagher (CRC Press, Boca Raton, FL, 1993), p. 339.
29.
29. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
30.
30. Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
http://dx.doi.org/10.1126/science.1234369
31.
31. T. Nakanaga, S. Kondo, and S. Saeki, J. Chem. Phys. 76, 3860 (1982).
http://dx.doi.org/10.1063/1.443527
32.
32. J. Matthews, A. Sinha, and J. S. Francisco, J. Chem. Phys. 122, 221101 (2005).
http://dx.doi.org/10.1063/1.1928228
33.
33. R. Gutbrod, E. Kraka, R. N. Schindler, and D. Cremer, J. Am. Chem. Soc. 119, 7330 (1997).
http://dx.doi.org/10.1021/ja970050c
34.
34. Y. Matsumi and M. Kawasaki, Chem. Rev. 103, 4767 (2003).
http://dx.doi.org/10.1021/cr0205255
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/14/10.1063/1.4824655
Loading
/content/aip/journal/jcp/139/14/10.1063/1.4824655
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/14/10.1063/1.4824655
2013-10-11
2016-09-26

Abstract

The velocity and angular distributions of O 1D photofragments arising from UV excitation of the CHOO intermediate on the 1A′ ← 1A′ transition are characterized using velocity map ion imaging. The anisotropic angular distribution yields the orientation of the transition dipole moment, which reflects the π* ← π character of the electronic transition associated with the COO group. The total kinetic energy release distributions obtained at several photolysis wavelengths provide detail on the internal energy distribution of the formaldehyde cofragments and the dissociation energy of CHOO 1A′ to O 1D + HCO 1A. A common termination of the total kinetic energy distributions, after accounting for the different excitation energies, gives an upper limit for the CHOO 1A′ dissociation energy of ≤ 54 kcal mol−1, which is compared with theoretical predictions including high level multi-reference calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/14/1.4824655.html;jsessionid=zmCc_zYO77sFhm6kxWxa9fCF.x-aip-live-06?itemId=/content/aip/journal/jcp/139/14/10.1063/1.4824655&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/14/10.1063/1.4824655&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/14/10.1063/1.4824655'
Right1,Right2,Right3,