Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/14/10.1063/1.4825173
1.
1. H. S. Sözüer and J. W. Haus, J. Opt. Soc. Am. B 10, 296 (1993).
http://dx.doi.org/10.1364/JOSAB.10.000296
2.
2. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3152
3.
3. C. M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011).
http://dx.doi.org/10.1038/nphoton.2011.154
4.
4. K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.02.011
5.
5. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, Appl. Phys. Lett. 84, 5434 (2004).
http://dx.doi.org/10.1063/1.1765734
6.
6. S. Glotzer and M. Solomon, Nature Mater. 6, 557 (2007).
http://dx.doi.org/10.1038/nmat1949
7.
7. O. Gang and Y. Zhang, ACS Nano 5, 8459 (2011).
http://dx.doi.org/10.1021/nn2041363
8.
8. U. Agarwal and F. A. Escobedo, Nature Mater. 10, 230 (2011).
http://dx.doi.org/10.1038/nmat2959
9.
9. P. F. Damasceno, M. Engel, and S. C. Glotzer, Science 337, 453 (2012).
http://dx.doi.org/10.1126/science.1220869
10.
10. C. Vega and P. A. Monson, J. Chem. Phys. 109, 9938 (1998).
http://dx.doi.org/10.1063/1.477660
11.
11. H. Xiong, M. Y. Sfeir, and O. Gang, Nano Lett. 10, 4456 (2010).
http://dx.doi.org/10.1021/nl102273c
12.
12. E. G. Noya, C. Vega, J. P. K. Doye, and A. A. Louis, J. Chem. Phys. 132, 234511 (2010).
http://dx.doi.org/10.1063/1.3454907
13.
13. F. Romano and F. Sciortino, Nat. Commun. 3, 975 (2012).
http://dx.doi.org/10.1038/ncomms1968
14.
14. G. Doppelbauer, E. G. Noya, E. Bianchi, and G. Kahl, Soft Matter 8, 7768 (2012).
http://dx.doi.org/10.1039/c2sm26043c
15.
15. E. Jankowski and S. C. Glotzer, Soft Matter 8, 2852 (2012).
http://dx.doi.org/10.1039/c2sm07101k
16.
16. Y. Wang, Y. Wang, D. R. Breed, V. N. Manoharan, L. Feng, A. D. Hollingsworth, M. Weck, and D. J. Pine, Nature (London) 491, 51 (2012).
http://dx.doi.org/10.1038/nature11564
17.
17. T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, and F. Sciortino, J. Chem. Phys. 138, 164505 (2013).
http://dx.doi.org/10.1063/1.4801438
18.
18. S. Torquato, Soft Matter 5, 1157 (2009).
http://dx.doi.org/10.1039/b814211b
19.
19. M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Phys. Rev. E 74, 021404 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021404
20.
20. M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Phys. Rev. E 75, 031403 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.031403
21.
21. T. Yoshida and S. Kamakura, Prog. Theor. Phys. 47, 1801 (1972).
http://dx.doi.org/10.1143/PTP.47.1801
22.
22. F. Saija, S. Prestipino, and G. Malescio, Phys. Rev. E 80, 031502 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031502
23.
23. M. Watzlawek, C. N. Likos, and H. Löwen, Phys. Rev. Lett. 82, 5289 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.5289
24.
24. D. Gottwald, G. Kahl, and C. N. Likos, J. Chem. Phys. 122, 204503 (2005).
http://dx.doi.org/10.1063/1.1901585
25.
25. T. Tückmantel, F. Lo Verso, and C. N. Likos, Mol. Phys. 107, 523 (2009).
http://dx.doi.org/10.1080/00268970902873562
26.
26. Y. D. Fomin, N. V. Gribova, V. N. Ryzhov, S. M. Stishov, and D. Frenkel, J. Chem. Phys. 129, 064512 (2008).
http://dx.doi.org/10.1063/1.2965880
27.
27. J. C. Pàmies, A. Cacciuto, and D. Frenkel, J. Chem. Phys. 131, 044514 (2009).
http://dx.doi.org/10.1063/1.3186742
28.
28. A. Jain, J. R. Errington, and T. M. Truskett, Soft Matter 9, 3866 (2013).
http://dx.doi.org/10.1039/c3sm27785b
29.
29. É. Marcotte, F. H. Stillinger, and S. Torquato, J. Chem. Phys. 138, 061101 (2013).
http://dx.doi.org/10.1063/1.4790634
30.
30. E. Edlund, O. Lindgren, and M. N. Jacobi, J. Chem. Phys. 139, 024107 (2013).
http://dx.doi.org/10.1063/1.4812727
31.
31. P. S. Shah, J. D. Holmes, K. P. Johnston, and B. A. Korgel, J. Phys. Chem. B 106, 2545 (2002).
http://dx.doi.org/10.1021/jp013931l
32.
32. P. S. Shah, S. Husain, K. P. Johnston, and B. A. Korgel, J. Phys. Chem. B 106, 12178 (2002).
http://dx.doi.org/10.1021/jp026180b
33.
33. P. Schapotschnikow, R. Pool, and T. J. H. Vlugt, Nano Lett. 8, 2930 (2008).
http://dx.doi.org/10.1021/nl8017862
34.
34. L. Hong, A. Cacciuto, E. Luijten, and S. Granick, Nano Lett. 6, 2510 (2006).
http://dx.doi.org/10.1021/nl061857i
35.
35. É. Marcotte, F. H. Stillinger, and S. Torquato, J. Chem. Phys. 134, 164105 (2011).
http://dx.doi.org/10.1063/1.3576141
36.
36.The optimized pair potential V(x) as a function of nondimensional interparticle separation x = r/σ has the form . Here, ε and σ are characteristic energy and length scales chosen so that V(1)/ε = 1, is the range, H is the Heaviside step function, , and constants {B, C, D} are chosen so that .
37.
37.For the diamond forming potential , the optimized parameters are A = 0.340010893, n = 3.39499, , , , , , , B = −0.0375558, C = 0.20321, and D = 1.17642.
38.
38.For the simple cubic forming potential , the optimized parameters are A = 0.394620116, n = 5.31842, , , , , , , B = −0.0187544, C = 0.0971676, and D = 0.366054.
39.
39. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188 (1984).
http://dx.doi.org/10.1063/1.448024
40.
40. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).
http://dx.doi.org/10.1063/1.462133
41.
41. K. S. Rane, S. Murali, and J. R. Errington, J. Chem. Theory Comput. 9, 2552 (2013).
http://dx.doi.org/10.1021/ct400074p
42.
42. J. R. Errington, J. Chem. Phys. 118, 9915 (2003).
http://dx.doi.org/10.1063/1.1572463
43.
43.See supplementary material at http://dx.doi.org/10.1063/1.4825173 for simulation results of assembly to the corresponding target structures upon isochoric quenching. [Supplementary Material]
44.
44. S. Prestipino, F. Saija, and G. Malescio, Soft Matter 5, 2795 (2009).
http://dx.doi.org/10.1039/b903931g
45.
45. S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. E 71, 050102(R) (2005).
http://dx.doi.org/10.1103/PhysRevE.71.050102
46.
46. D. Gottwald, C. N. Likos, G. Kahl, and H. Löwen, Phys. Rev. Lett. 92, 068301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.068301
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/14/10.1063/1.4825173
Loading
/content/aip/journal/jcp/139/14/10.1063/1.4825173
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/14/10.1063/1.4825173
2013-10-10
2016-09-29

Abstract

We use molecular simulation to construct equilibrium phase diagrams for two recently introduced model materials with isotropic, soft-repulsive pair interactions designed to favor diamond and simple cubic lattice ground states, respectively, over a wide range of densities [Jain et al. , Soft Matter9, 3866 (2013)]. We employ free energy based Monte Carlo simulation techniques to precisely trace the inter-crystal and fluid-crystal coexistence curves. We find that both model materials display rich polymorphic phase behavior featuring stable crystals corresponding to the target ground-state structures, as well as a variety of other crystalline (e.g., hexagonal and body-centered cubic) phases and multiple reentrant melting transitions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/14/1.4825173.html;jsessionid=f5zIs3MpFAWSe4ZS6YoMi0yV.x-aip-live-03?itemId=/content/aip/journal/jcp/139/14/10.1063/1.4825173&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/14/10.1063/1.4825173&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/14/10.1063/1.4825173'
Right1,Right2,Right3,