1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Accurate statistical associating fluid theory for chain molecules formed from Mie segments
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/15/10.1063/1.4819786
1.
1. J. S. Rowlinson, Cohesion: A Scientific History of Intermolecular Forces (Cambridge University Press, Cambridge, 2002).
2.
2. I. Newton, Philosophiae Naturalis Principia Mathematica (London, 1687) [English translation of 3rd ed. by A. Motte, The Mathematical Principles of Natural Philosophy (London, 1729)].
3.
3. R. J. Bošković, Theoria Philosophiae Naturalis, 2nd ed. (Venice, 1763)
3.[English translation by J. M. Child, A Theory of Natural Philosophy (Chicago, 1922)].
4.
4. J. Priestley, The History and Present State of Electricity, with Original Experiments (London, 1767).
5.
5. H. Cavendish, Philos. Trans. 61, 584 (1771).
http://dx.doi.org/10.1098/rstl.1771.0056
6.
6. C.-A. de Coulomb, Histoire de l'Académie Royale des Sciences (1784), pp. 229269.
7.
7. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805).
http://dx.doi.org/10.1098/rstl.1805.0005
8.
8. P. S. Laplace, Traité de Mécanique Céleste; Supplément au Dixième Livre, sur L'Action Capillaire (Courcier, Paris, 1806).
9.
9. O. F. Mosotti, Sur les Forces qui Régissent la Constitution Intérieure des Corps, Aperçu pour Servir à la Détermination de la Cause des Lois de l' Action Moléculaire (Turin, 1836)
9.[English translation in Taylor's Scientific Memoirs (1836), Vol. 1, pp. 448469].
10.
10. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).
11.
11. J. S. Rowlinson, Physica A 156, 15 (1989).
http://dx.doi.org/10.1016/0378-4371(89)90108-8
12.
12. R. Clausius, Ann. Phys. (Berlin) 176, 353 (1857)
http://dx.doi.org/10.1002/andp.18571760302
12.R. Clausius [Philos. Mag. 14, 108 (1857)].
http://dx.doi.org/10.1080/14786445708642360
13.
13. J. C. Maxwell, Philos. Trans. R. Soc. London 157, 49 (1867).
http://dx.doi.org/10.1098/rstl.1867.0004
14.
14. L. Boltzmann, Sitz. Akad. Naturwiss. Classe Kaiser Akad. Wissen Wien 66, 275 (1872).
15.
15. J. D. van der Waals, “Over de Continuiteit van den Gas-en Vloeistoftoestand,” Ph.D. thesis (University of Leiden, 1873);
15.J. D. van der Waals, On the Continuity of the Gaseous and Liquid States, edited by J. S. Rowlinson (North-Holland, Amsterdam, 1988).
16.
16. W. Sutherland, Philos. Mag. 22, 81 (1886);
http://dx.doi.org/10.1080/14786448608627905
16.W. Sutherland, Philos. Mag. 24, 113 (1887);
http://dx.doi.org/10.1080/1478644870862806
16.W. Sutherland, Philos. Mag. 24, 168 (1887).
http://dx.doi.org/10.1080/14786448708628077
17.
17. W. Sutherland, Philos. Mag. 27, 305 (1889).
http://dx.doi.org/10.1080/14786448908628359
18.
18. W. Sutherland, Philos. Mag. 36, 507 (1893).
http://dx.doi.org/10.1080/14786449308620508
19.
19. G. Mie, Ann. Phys. (Berlin) 316, 657 (1903).
http://dx.doi.org/10.1002/andp.19033160802
20.
20. E. A. Grüneisen, Z. Elektrochem. Angew. Phys. Chem. 17, 737 (1911).
21.
21. E. A. Grüneisen, Ann. Phys. (Berlin) 344, 257 (1912).
http://dx.doi.org/10.1002/andp.19123441202
22.
22. W. H. Keesom, Commun. Phys. Lab. Univ. Leiden 32(Suppl. 24B), 6 (1912).
23.
23. W. H. Keesom, Proc. Sect. Sci. Konink. Akad. Weten. Amsterdam 15, 643 (1912).
24.
24. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 441 (1924).
http://dx.doi.org/10.1098/rspa.1924.0081
25.
25. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).
http://dx.doi.org/10.1098/rspa.1924.0082
26.
26. J. E. Lennard-Jones, Proc. R. Soc. London 43, 461 (1931).
http://dx.doi.org/10.1088/0959-5309/43/5/301
27.
27. J. C. Slater, Phys. Rev. 32, 349 (1928).
http://dx.doi.org/10.1103/PhysRev.32.349
28.
28. J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
http://dx.doi.org/10.1103/PhysRev.37.682
29.
29. S. C. Wang, Phys. Z. 28, 663 (1927).
30.
30. R. Eisenschitz and F. London, Z. Phys. 60, 491 (1930).
http://dx.doi.org/10.1007/BF01341258
31.
31. F. London, Z. Phys. Chem. B 11, 222 (1930).
32.
32. H. Margenau, Phys. Rev. 38, 747 (1931).
http://dx.doi.org/10.1103/PhysRev.38.747
33.
33. H. Margenau, Rev. Mod. Phys. 11, 1 (1939).
http://dx.doi.org/10.1103/RevModPhys.11.1
34.
34. R. A. Buckingham, Proc. R. Soc. London, Ser. A 168, 264 (1938).
http://dx.doi.org/10.1098/rspa.1938.0173
35.
35. R. A. Buckingham and J. Corner, Proc. R. Soc. London 189, 118 (1947).
http://dx.doi.org/10.1098/rspa.1947.0032
36.
36. A. J. Stone, The Theory of Intermolecular Forces, International Series of Monographs on Chemistry No. 32 (Clarendon Press, Oxford, 1996).
37.
37. T. Kihara, Nippon Sugaku-Buturegakukaisi 17, 11 (1943).
38.
38. T. Kihara, Rev. Mod. Phys. 25, 831 (1953).
http://dx.doi.org/10.1103/RevModPhys.25.831
39.
39. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
40.
40. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, International Series of Monographs on Chemistry No. 3 (Clarendon Press, Oxford, 1981).
41.
41. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Fluid Phase Equilib. 52, 31 (1989).
http://dx.doi.org/10.1016/0378-3812(89)80308-5
42.
42. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res. 29, 1709 (1990).
http://dx.doi.org/10.1021/ie00104a021
43.
43. M. S. Wertheim, J. Stat. Phys. 35, 19 (1984).
http://dx.doi.org/10.1007/BF01017362
44.
44. M. S. Wertheim, J. Stat. Phys. 35, 35 (1984).
http://dx.doi.org/10.1007/BF01017363
45.
45. M. S. Wertheim, J. Stat. Phys. 42, 459 (1986).
http://dx.doi.org/10.1007/BF01127721
46.
46. M. S. Wertheim, J. Stat. Phys. 42, 477 (1986).
http://dx.doi.org/10.1007/BF01127722
47.
47. M. S. Wertheim, J. Chem. Phys. 85, 2929 (1986).
http://dx.doi.org/10.1063/1.451002
48.
48. M. S. Wertheim, J. Chem. Phys. 87, 7323 (1987).
http://dx.doi.org/10.1063/1.453326
49.
49. E. A. Müller and K. E. Gubbins, “Associating fluids and fluid mixtures,” in Equations of State for Fluids and Fluid Mixtures, edited by J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White Jr. (Elsevier, New York, 2000), Vol. 2, p. 435.
50.
50. E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 40, 2193 (2001).
http://dx.doi.org/10.1021/ie000773w
51.
51. I. G. Economou, Ind. Eng. Chem. Res. 41, 953 (2002).
http://dx.doi.org/10.1021/ie0102201
52.
52. P. Paricaud, A. Galindo, and G. Jackson, Fluid Phase Equilib. 194, 87 (2002).
http://dx.doi.org/10.1016/S0378-3812(01)00659-8
53.
53. S. P. Tan, H. Adidharma, and M. Radosz, Ind. Eng. Chem. Res. 47, 8063 (2008).
http://dx.doi.org/10.1021/ie8008764
54.
54. G. Kontogeorgis and G. K. Folas, Thermodynamic Models For Industrial Applications (Wiley-VCH, Weinheim, 2010).
55.
55. C. McCabe, and A. Galindo, “SAFT associating fluids and fluid mixtures,” in Applied Thermodynamics of Fluids, edited by A. Goodwin, J. V. Sengers, and C. J. Peters (Royal Society of Chemistry, UK, 2010), Chap. XI.
56.
56. A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, J. Chem. Phys 106, 4168 (1997).
http://dx.doi.org/10.1063/1.473101
57.
57. H. Adidharma and M. Radosz, Ind. Eng. Chem. Res. 37, 4453 (1998).
http://dx.doi.org/10.1021/ie980345e
58.
58. B. H. Patel, H. Docherty, S. Varga, A. Galindo, and G. C. Maitland, Mol. Phys. 103, 129 (2005).
http://dx.doi.org/10.1080/00268970412331303990
59.
59. J. Li, H. He, C. Peng, H. Liu, and Y. Hu, Fluid Phase Equilib. 276, 57 (2009).
http://dx.doi.org/10.1016/j.fluid.2008.10.009
60.
60. H. Guérin, J. Mol. Liq. 156, 179 (2010).
http://dx.doi.org/10.1016/j.molliq.2010.07.008
61.
61. W. G. Chapman, J. Chem. Phys. 93, 4299 (1990).
http://dx.doi.org/10.1063/1.458711
62.
62. D. Ghonasgi and W. G. Chapman, AIChE J. 40, 878 (1994).
http://dx.doi.org/10.1002/aic.690400514
63.
63. J. K. Johnson, E. A. Müller, and K. E. Gubbins, J. Phys. Chem. 98, 6413 (1994).
http://dx.doi.org/10.1021/j100076a028
64.
64. T. Kraska and K. E. Gubbins, Ind. Eng. Chem. Res. 35, 4727 (1996).
http://dx.doi.org/10.1021/ie9602320
65.
65. L. A. Davies, A. Gil-Villegas, and G. Jackson, Int. J. Thermophys. 19, 675 (1998).
http://dx.doi.org/10.1023/A:1022662116418
66.
66. F. J. Blas and L. F. Vega, Mol. Phys. 92, 135 (1997).
http://dx.doi.org/10.1080/00268979709482082
67.
67. F. J. Blas and L. F. Vega, Ind. Eng. Chem. Res. 37, 660 (1998).
http://dx.doi.org/10.1021/ie970449+
68.
68. L. A. Davies, A. Gil-Villegas, and G. Jackson, J. Chem. Phys. 111, 8659 (1999).
http://dx.doi.org/10.1063/1.480205
69.
69. I. Nezbeda, R. Melnyk, and A. Trokhymchuk, Fluid Phase Equilib. 309, 174 (2011).
http://dx.doi.org/10.1016/j.fluid.2011.07.006
70.
70. A. Galindo, L. A. Davies, A. Gil-Villegas, and G. Jackson, Mol. Phys. 93, 241 (1998).
http://dx.doi.org/10.1080/002689798169249
71.
71. J. Gross and G. Sadowski, Ind. Eng. Chem. Res. 41, 1084 (2002).
http://dx.doi.org/10.1021/ie010449g
72.
72. T. Lafitte, D. Bessières, M. M. Piñeiro, and J. L. Daridon, J. Chem. Phys. 124, 024509 (2006).
http://dx.doi.org/10.1063/1.2140276
73.
73. T. Lafitte, M. M. Piñeiro, J. L. Daridon, and D. Bessières, J. Phys. Chem. B. 111, 3447 (2007).
http://dx.doi.org/10.1021/jp0682208
74.
74. A. J. de Villiers, C. E. Schwarz, A. J. Burger, and G. Kontogeorgis, Fluid Phase Equilib. 338, 1 (2013).
http://dx.doi.org/10.1016/j.fluid.2012.09.035
75.
75. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976).
http://dx.doi.org/10.1021/i160057a011
76.
76. G. Soave, Chem. Eng. Sci. 27, 1197 (1972).
http://dx.doi.org/10.1016/0009-2509(72)80096-4
77.
77. G. Galliero, T. Lafitte, D. Bessières, and C. Boned, J. Chem. Phys. 127, 184506 (2007).
http://dx.doi.org/10.1063/1.2801997
78.
78. J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78, 591 (1993).
http://dx.doi.org/10.1080/00268979300100411
79.
79. J. Kolafa and I. Nezbeda, Fluid Phase Equilib. 100, 1 (1994).
http://dx.doi.org/10.1016/0378-3812(94)80001-4
80.
80. E. A. Müller, K. E. Gubbins, D. M. Tsangaris, and J. J. de Pablo, J. Chem. Phys. 103, 3868 (1995).
http://dx.doi.org/10.1063/1.470036
81.
81. E. A. Müller, L. F. Vega, and K. E. Gubbins, Mol. Phys. 83, 1209 (1994).
http://dx.doi.org/10.1080/00268979400101881
82.
82. E. A. Müller, L. F. Vega, and K. E. Gubbins, Int. J. Thermophys. 16, 705 (1995).
http://dx.doi.org/10.1007/BF01438855
83.
83. J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
84.
84. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).
http://dx.doi.org/10.1063/1.1701689
85.
85. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.587
86.
86. D. M. Tsangaris and J. J. de Pablo, J. Chem. Phys. 101, 1477 (1994).
http://dx.doi.org/10.1063/1.467772
87.
87. P. Paricaud, J. Chem. Phys. 124, 154505 (2006).
http://dx.doi.org/10.1063/1.2181979
88.
88. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).
http://dx.doi.org/10.1063/1.1672048
89.
89. S. Zhou, J. Chem. Phys. 130, 054103 (2009).
http://dx.doi.org/10.1063/1.3072795
90.
90. A. Malijevsky and S. Labik, Mol. Phys. 60, 663 (1987).
http://dx.doi.org/10.1080/00268978700100441
91.
91. F. F. Betancourt-Cárdenas, L. A. Galicia-Luna, and S. I. Sandler, Fluid Phase Equilib. 264, 174 (2008).
http://dx.doi.org/10.1016/j.fluid.2007.11.015
92.
92. W. R. Smith, D. Henderson, and J. A. Barker, J. Chem. Phys. 53, 508 (1970).
http://dx.doi.org/10.1063/1.1674017
93.
93. B. J. Zhang, Fluid Phase Equilib. 154, 1 (1999).
http://dx.doi.org/10.1016/S0378-3812(98)00431-2
94.
94. R. Espindola-Heredia, F. del Río, and A. Malijevsky, J. Chem. Phys. 130, 024509 (2009).
http://dx.doi.org/10.1063/1.3054361
95.
95. H. Okumura and F. Yonezawa, J. Chem. Phys. 113, 9162 (2000).
http://dx.doi.org/10.1063/1.1320828
96.
96. J. J. Potoff and D. A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009).
http://dx.doi.org/10.1021/jp9072137
97.
97. I. Nezbeda and G. Iglesias-Silva, Mol. Phys. 69, 767 (1990).
http://dx.doi.org/10.1080/00268979000100561
98.
98. T. Boublík, Mol. Phys. 59, 775 (1986).
http://dx.doi.org/10.1080/00268978600102391
99.
99. Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 100, 3079 (1994).
http://dx.doi.org/10.1063/1.466449
100.
100. F. W. Tavares, J. Chang, and S. I. Sandler, Mol. Phys. 86, 1451 (1995).
http://dx.doi.org/10.1080/00268979500102851
101.
101. W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Phys. 65, 1057 (1988).
http://dx.doi.org/10.1080/00268978800101601
102.
102. G. Jackson, W. G. Chapman, and K. E. Gubbins, Mol. Phys. 65, 1 (1988).
http://dx.doi.org/10.1080/00268978800100821
103.
103. N. M. P. Kakalis, A. I. Kakhu, and C. C. Pantelides, Ind. Eng. Chem. Res. 45, 6056 (2006).
http://dx.doi.org/10.1021/ie051417m
104.
104. Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 99, 9828 (1993).
http://dx.doi.org/10.1063/1.465465
105.
105. Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 100, 6665 (1994).
http://dx.doi.org/10.1063/1.467026
106.
106. E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 34, 3662 (1995).
http://dx.doi.org/10.1021/ie00037a055
107.
107. Y. Tang and B. C.-Y. Lu, Fluid Phase Equilib. 171, 27 (2000).
http://dx.doi.org/10.1016/S0378-3812(00)00346-0
108.
108. J. K. Johnson and K. E. Gubbins, Mol. Phys. 77, 1033 (1992).
http://dx.doi.org/10.1080/00268979200102981
109.
109. C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor and Francis, London, 1996).
110.
110. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Clarendon, Oxford, 1992).
111.
111. M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.653
112.
112. M. A. Anisimov and J. V. Sengers, in Equations of State for Fluids and Fluid Mixtures, edited by J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White (Elsevier, Amsterdam, 2000), Chap. XI.
113.
113. A. Lofti, J. Vrabec, and J. Fischer, Mol. Phys. 76, 1319 (1992).
http://dx.doi.org/10.1080/00268979200102111
114.
114. D. Ben-Amotz and G. Stell, J. Chem. Phys. 120, 4844 (2004).
http://dx.doi.org/10.1063/1.1647520
115.
115. P. Orea, Y. Reyes-Mercado, and Y. Duda, Phys. Lett. A 372, 7024 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.10.047
116.
116. L. A. Girifalco, J. Phys. Chem. 95, 5370 (1991).
http://dx.doi.org/10.1021/j100167a002
117.
117. L. A. Girifalco, J. Phys. Chem. 96, 858 (1992).
http://dx.doi.org/10.1021/j100181a061
118.
118. L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B 62, 13104 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13104
119.
119. F. A. Escobedo and J. J. de Pablo, Mol. Phys. 87, 347 (1996).
http://dx.doi.org/10.1080/00268979600100231
120.
120. C. Vega, C. McBride, E. de Miguel, F. J. Blas, and A. Galindo, J. Chem. Phys. 118, 10696 (2003).
http://dx.doi.org/10.1063/1.1572811
121.
121. L. G. MacDowell and F. J. Blas, J. Chem. Phys. 131, 074705 (2009).
http://dx.doi.org/10.1063/1.3197009
122.
122. P. Paricaud, S. Varga, and G. Jackson, J. Chem. Phys. 118, 8525 (2003).
http://dx.doi.org/10.1063/1.1565104
123.
123. F. J. Blas and L. F. Vega, J. Chem. Phys. 115, 4355 (2001).
http://dx.doi.org/10.1063/1.1390506
124.
124. D. Ghonasgi and W. G. Chapman, J. Chem. Phys. 100, 6633 (1994).
http://dx.doi.org/10.1063/1.467021
125.
125. J. Chang and S. I. Sandler, Chem. Eng. Sci. 49, 2777 (1994).
http://dx.doi.org/10.1016/0009-2509(94)E0097-A
126.
126. C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B 115, 11154 (2011).
http://dx.doi.org/10.1021/jp204908d
127.
127. C. Avendaño, T. Lafitte, C. S. Adjiman, A. Galindo, E. A. Müller, and G. Jackson, J. Phys. Chem. B 117, 2717 (2013).
http://dx.doi.org/10.1021/jp306442b
128.
128. T. Lafitte, C. Avendaño, V. Papaioannou, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, Mol. Phys. 110, 1189 (2012).
http://dx.doi.org/10.1080/00268976.2012.662303
129.
129. P. Linstrom and W. Mallard, “NIST Chemistry Webbook, NIST Standard Reference Database Number 69,” http://webbook.nist.gov, retrieved 10 December 2012.
130.
130. B. D. Smith and R. Srivastava, Thermodynamic Data for Pure Compounds: Part A Hydrocarbons and Ketones (Elsevier, Amsterdam, 1986).
131.
131. B. D. Smith and R. Srivastava, Thermodynamic Data for Pure Compounds: Part B Halogenated Hydrocarbons and Alcohols (Elsevier, Amsterdam, 1986).
132.
132. L. Yelash, M. Müller, W. Paul, and K. Binder, Phys. Chem. Chem. Phys. 7, 3728 (2005).
http://dx.doi.org/10.1039/b509101m
133.
133. L. Yelash, M. Müller, W. Paul, and K. Binder, J. Chem. Phys. 123, 014908 (2005).
http://dx.doi.org/10.1063/1.1948374
134.
134. R. Privat, R. Gani, and J.-N. Jaubert, Fluid Phase Equilib. 295, 76 (2010).
http://dx.doi.org/10.1016/j.fluid.2010.03.041
135.
135. G. G. Yee, J. L. Fulton, and R. D. Smith, J. Phys. Chem. 96, 6172 (1992).
http://dx.doi.org/10.1021/j100194a017
136.
136. S. H. Huang and M. Radosz, Ind. Eng. Chem. Res. 29, 2284 (1990).
http://dx.doi.org/10.1021/ie00107a014
137.
137. B. A. Bufkin, R. L. Robinson Jr., S. S. Estrera, and D. K. Luks, J. Chem. Eng. Data 31, 421 (1986).
http://dx.doi.org/10.1021/je00046a015
138.
138. H. H. Reamer and B. H. Sage, J. Chem. Eng. Data 8, 508 (1963).
http://dx.doi.org/10.1021/je60019a010
139.
139. V. Papaioannou, T. Lafitte, C. Avendaño, C. S. Adjiman, G. Jackson, E. A. Müller, and A. Galindo, “Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments,” J. Chem. Phys. (submitted).
140.
140. A. Lymperiadis, C. S. Adjiman, A. Galindo, and G. Jackson, J. Chem. Phys. 127, 234903 (2007).
http://dx.doi.org/10.1063/1.2813894
141.
141. A. Lymperiadis, C. S. Adjiman, G. Jackson, and A. Galindo, Fluid Phase Equilib. 274, 85 (2008).
http://dx.doi.org/10.1016/j.fluid.2008.08.005
142.
142. L. L. Lee, Molecular Thermodynamics of Nonideal Fluids (Butterworth, Boston, 1988).
143.
143. C. McCabe, A. Galindo, A. Gil-Villegas, and G. Jackson, J. Phys. Chem. B 102, 8060 (1998).
http://dx.doi.org/10.1021/jp982331s
144.
144. T. Boublík, J. Chem. Phys. 53, 471 (1970).
http://dx.doi.org/10.1063/1.1673824
145.
145. G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys. 54, 1523 (1971).
http://dx.doi.org/10.1063/1.1675048
146.
146. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures (Butterworth, London, 1982).
147.
147. A. J. Haslam, A. Galindo, and G. Jackson, Fluid Phase Equilib. 266, 105 (2008).
http://dx.doi.org/10.1016/j.fluid.2008.02.004
148.
148. Y.-J. Sheng, A. Z. Panagiotopoulos, S. K. Kumar, and I. Szleifer, Macromolecules 27, 400 (1994).
http://dx.doi.org/10.1021/ma00080a012
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4819786
Loading
/content/aip/journal/jcp/139/15/10.1063/1.4819786
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/15/10.1063/1.4819786
2013-10-16
2014-12-17

Abstract

A highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented. The quality of the theoretical description of the vapour-liquid equilibria (coexistence densities and vapour pressures) and the second-derivative thermophysical properties (heat capacities, isobaric thermal expansivities, and speed of sound) are critically assessed by comparison with molecular simulation and with experimental data of representative real substances. Our new EOS represents a notable improvement with respect to previous versions of the statistical associating fluid theory for variable range interactions (SAFT-VR) of the generic Mie form. The approach makes rigorous use of the Barker and Henderson high-temperature perturbation expansion up to third order in the free energy of the monomer Mie system. The radial distribution function of the reference monomer fluid, which is a prerequisite for the representation of the properties of the fluid of Mie chains within a Wertheim first-order thermodynamic perturbation theory (TPT1), is calculated from a second-order expansion. The resulting SAFT-VR Mie EOS can now be applied to molecular fluids characterized by a broad range of interactions spanning from soft to very repulsive and short-ranged Mie potentials. A good representation of the corresponding molecular-simulation data is achieved for model monomer and chain fluids. When applied to the particular case of the ubiquitous Lennard-Jones potential, our rigorous description of the thermodynamic properties is of equivalent quality to that obtained with the empirical EOSs for LJ monomer (EOS of Johnson ) and LJ chain (soft-SAFT) fluids. A key feature of our reformulated SAFT-VR approach is the greatly enhanced accuracy in the near-critical region for chain molecules. This attribute, combined with the accurate modeling of second-derivative properties, allows for a much improved global representation of the thermodynamic properties and fluid-phase equilibria of pure fluids and their mixtures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/15/1.4819786.html;jsessionid=2cg8l0ygq3oex.x-aip-live-02?itemId=/content/aip/journal/jcp/139/15/10.1063/1.4819786&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Accurate statistical associating fluid theory for chain molecules formed from Mie segments
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4819786
10.1063/1.4819786
SEARCH_EXPAND_ITEM