Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/15/10.1063/1.4824481
1.
1. B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
http://dx.doi.org/10.1063/1.2790009
2.
2. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
3.
3. B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 131, 124509 (2009).
http://dx.doi.org/10.1063/1.3236840
4.
4. E. E. Dahlke, R. M. Olson, H. R. Leverentz, and D. G. Truhlar, J. Phys. Chem. A 112, 3976 (2008).
http://dx.doi.org/10.1021/jp077376k
5.
5. X. Xu and W. A. Goddard III, J. Phys. Chem. A 108, 2305 (2004).
http://dx.doi.org/10.1021/jp035869t
6.
6. J. T. Su, X. Xu, and W. A. Goddard III, J. Phys. Chem. A 108, 10518 (2004).
http://dx.doi.org/10.1021/jp047502+
7.
7. S. S. Xantheas, J. Chem. Phys. 102, 4505 (1995).
http://dx.doi.org/10.1063/1.469499
8.
8. K. Kim and K. D. Jordan, J. Phys. Chem. 98, 10089 (1994).
http://dx.doi.org/10.1021/j100091a024
9.
9. J. A. Anderson and G. S. Tschumper, J. Phys. Chem. A 110, 7268 (2006).
http://dx.doi.org/10.1021/jp0613889
10.
10. G. C. Shields and K. N. Kirschner, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38, 32 (2008).
http://dx.doi.org/10.1080/15533170701853918
11.
11. G. I. Csonka, A. Ruzsinszky, and J. P. Perdew, J. Phys. Chem. B 109, 21471 (2005).
http://dx.doi.org/10.1021/jp055443+
12.
12. E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005).
http://dx.doi.org/10.1021/jp052436c
13.
13. M. J. Gillan, F. R. Manby, M. D. Towler, and D. Alfè, J. Chem. Phys. 136, 244105 (2012).
http://dx.doi.org/10.1063/1.4730035
14.
14. J. Ireta, J. Neugebauer, and M. Scheffler, J. Phys. Chem. A 108, 5692 (2004).
http://dx.doi.org/10.1021/jp0377073
15.
15. S. Tsuzuki and H. P. Lüthi, J. Chem. Phys. 114, 3949 (2001).
http://dx.doi.org/10.1063/1.1344891
16.
16. J. J. Novoa and C. Sosa, J. Phys. Chem. 99, 15837 (1995).
http://dx.doi.org/10.1021/j100043a023
17.
17. J. R. Hammond, N. Govind, K. Kowalski, J. Autschbach, and S. S. Xantheas, J. Chem. Phys. 131, 214103 (2009).
http://dx.doi.org/10.1063/1.3263604
18.
18. F.-F. Wang, G. Jenness, W. A. Al-Saidi, and K. D. Jordan, J. Chem. Phys. 132, 134303 (2010).
http://dx.doi.org/10.1063/1.3373815
19.
19. J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, J. Chem. Phys. 120, 300 (2004).
http://dx.doi.org/10.1063/1.1630560
20.
20. E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 121, 5400 (2004).
http://dx.doi.org/10.1063/1.1782074
21.
21. M. V. Fernández-Serra and E. Artacho, J. Chem. Phys. 121, 11136 (2004).
http://dx.doi.org/10.1063/1.1813431
22.
22. M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed, and M. Krack, ChemPhysChem 6, 1894 (2005).
http://dx.doi.org/10.1002/cphc.200400580
23.
23. M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo, and C. Mundy, Mol. Phys. 104, 3619 (2006).
http://dx.doi.org/10.1080/00268970601014781
24.
24. M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed, and M. Krack, J. Phys. Chem. A 110, 640 (2006).
http://dx.doi.org/10.1021/jp0535947
25.
25. H.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 125, 154507 (2006).
http://dx.doi.org/10.1063/1.2354158
26.
26. H.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 126, 164501 (2007).
http://dx.doi.org/10.1063/1.2718521
27.
27. T. Todorova, A. P. Seitsonen, J. Hutter, I.-F. W. Kuo, and C. J. Mundy, J. Phys. Chem. B 110, 3685 (2006).
http://dx.doi.org/10.1021/jp055127v
28.
28. J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, J. Chem. Phys. 122, 014515 (2005).
http://dx.doi.org/10.1063/1.1828433
29.
29. M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, J. Chem. Phys. 128, 214104 (2008).
http://dx.doi.org/10.1063/1.2931945
30.
30. T. D. Kühne, M. Krack, and M. Parrinello, J. Chem. Theory Comput. 5, 235 (2009).
http://dx.doi.org/10.1021/ct800417q
31.
31. P. H.-L. Sit and N. Marzari, J. Chem. Phys. 122, 204510 (2005).
http://dx.doi.org/10.1063/1.1908913
32.
32. M. V. Fernández-Serra, G. Ferlat, and E. Artacho, Mol. Simul. 31, 361 (2005).
http://dx.doi.org/10.1080/08927020500066726
33.
33. D. Asthagiri, L. R. Pratt, and J. D. Kress, Phys. Rev. E 68, 041505 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.041505
34.
34. A. E. Mattsson and T. R. Mattsson, J. Chem. Theory Comput. 5, 887 (2009).
http://dx.doi.org/10.1021/ct8004968
35.
35. I.-F. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M. L. Klein, F. Mohamed et al., J. Phys. Chem. B 108, 12990 (2004).
http://dx.doi.org/10.1021/jp047788i
36.
36. M. Sprik, J. Hutter, and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).
http://dx.doi.org/10.1063/1.471957
37.
37. P. L. Silvestrelli and M. Parrinello, J. Chem. Phys. 111, 3572 (1999).
http://dx.doi.org/10.1063/1.479638
38.
38. S. Yoo, X. C. Zeng, and S. S. Xantheas, J. Chem. Phys. 130, 221102 (2009).
http://dx.doi.org/10.1063/1.3153871
39.
39. C. Zhang, D. Donadio, F. Gygi, and G. Galli, J. Chem. Theory Comput. 7, 1443 (2011).
http://dx.doi.org/10.1021/ct2000952
40.
40. B. Chen, I. Ivanov, M. L. Klein, and M. Parrinello, Phys. Rev. Lett. 91, 215503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.215503
41.
41. J. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.017801
42.
42. K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080 (1993).
http://dx.doi.org/10.1063/1.465574
43.
43. O. Akin-Ojo and F. Wang, Chem. Phys. Lett. 513, 59 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.07.064
44.
44. D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 138, 221102 (2013).
http://dx.doi.org/10.1063/1.4810882
45.
45. B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
46.
46. E. D. Murray and G. Galli, Phys. Rev. Lett. 108, 105502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.105502
47.
47. I. Hamada, J. Chem. Phys. 133, 214503 (2010).
http://dx.doi.org/10.1063/1.3507916
48.
48. B. Kolb and T. Thonhauser, Phys. Rev. B 84, 045116 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045116
49.
49. O. Kambara, K. Takahashi, M. Hayashi, and J.-L. Kuo, Phys. Chem. Chem. Phys. 14, 11484 (2012).
http://dx.doi.org/10.1039/c2cp41495c
50.
50. Y. Fang, B. Xiao, J. Tao, J. Sun, and J. P. Perdew, Phys. Rev. B 87, 214101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214101
51.
51. M. J. Gillan, D. Alfè, A. P. Bartók, and G. Csányi, “First-principles energetics of water clusters and ice: A many-body analysis,” J. Chem. Phys. (submitted); preprint arXiv:1303.0751.
52.
52. B. Pamuk, J. M. Soler, R. Ramírez, C. P. Herrero, P. Stephens, P. B. Allen, and M.-V. Fernández-Serra, Phys. Rev. Lett. 108, 193003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.193003
53.
53. C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. Lett. 69, 462 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.462
54.
54. D. R. Hamann, Phys. Rev. B 55, R10157 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10157
55.
55. S. J. Singer, J.-L. Kuo, T. K. Hirsch, C. Knight, L. Ojamäe, and M. L. Klein, Phys. Rev. Lett. 94, 135701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.135701
56.
56. G. A. Tribello, B. Slater, and C. G. Salzmann, J. Am. Chem. Soc. 128, 12594 (2006).
http://dx.doi.org/10.1021/ja0630902
57.
57. M. de Koning, A. Antonelli, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. 96, 075501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.075501
58.
58. P. J. Feibelman, Phys. Chem. Chem. Phys. 10, 4688 (2008).
http://dx.doi.org/10.1039/b808482n
59.
59. A. Hermann and P. Schwerdtfeger, Phys. Rev. Lett. 101, 183005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.183005
60.
60. D. Pan, L.-M. Liu, G. A. Tribello, B. Slater, A. Michaelides, and E. Wang, Phys. Rev. Lett. 101, 155703 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.155703
61.
61. A. Erba, S. Casassa, L. Maschio, and C. Pisani, J. Phys. Chem. B 113, 2347 (2009).
http://dx.doi.org/10.1021/jp809885e
62.
62. J. A. Morrone, L. Lin, and R. Car, J. Chem. Phys. 130, 204511 (2009).
http://dx.doi.org/10.1063/1.3142828
63.
63. B. Militzer and H. F. Wilson, Phys. Rev. Lett. 105, 195701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.195701
64.
64. F. Labat, C. Pouchan, C. Adamo, and G. E. Scuseria, J. Comput. Chem. 32, 2177 (2011).
http://dx.doi.org/10.1002/jcc.21801
65.
65. I.-C. Lin, A. P. Seitsonen, M. D. Coutinho-Neto, I. Tavernelli, and U. Rothlisberger, J. Phys. Chem. B 113, 1127 (2009).
http://dx.doi.org/10.1021/jp806376e
66.
66. J. Schmidt, J. VandeVondele, I.-F. W. Kuo, D. Sebastiani, J. I. Siepmann, J. Hutter, and C. J. Mundy, J. Phys. Chem. B 113, 11959 (2009).
http://dx.doi.org/10.1021/jp901990u
67.
67. J. Wang, G. Román-Pérez, J. M. Soler, E. Artacho, and M.-V. Fernández-Serra, J. Chem. Phys. 134, 024516 (2011).
http://dx.doi.org/10.1063/1.3521268
68.
68. A. Møgelhøj, A. K. Kelkkanen, K. T. Wikfeldt, J. Schiøtz, J. J. Mortensen, L. G. M. Pettersson, B. I. Lundqvist, K. W. Jacobsen, A. Nilsson, and J. K. Nørskov, J. Phys. Chem. B 115, 14149 (2011).
http://dx.doi.org/10.1021/jp2040345
69.
69. C. Zhang, J. Wu, G. Galli, and F. Gygi, J. Chem. Theory Comput. 7, 3054 (2011).
http://dx.doi.org/10.1021/ct200329e
70.
70. R. Jonchiere, A. P. Seitsonen, G. Ferlat, A. M. Saitta, and R. Vuilleumier, J. Chem. Phys. 135, 154503 (2011).
http://dx.doi.org/10.1063/1.3651474
71.
71. S. Yoo and S. S. Xantheas, J. Chem. Phys. 134, 121105 (2011).
http://dx.doi.org/10.1063/1.3573375
72.
72. Z. Ma, Y. Zhang, and M. E. Tuckerman, J. Chem. Phys. 137, 044506 (2012).
http://dx.doi.org/10.1063/1.4736712
73.
73. Z. Li, “Improving ab initio molecular dynamics of liquid water,” Ph.D. thesis (Princeton University, 2012).
74.
74. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
75.
75. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
76.
76. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
77.
77. O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.153004
78.
78. P. L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.053002
79.
79. T. Sato and H. Nakai, J. Chem. Phys. 131, 224104 (2009).
http://dx.doi.org/10.1063/1.3269802
80.
80. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
81.
81. O. A. Vydrov and T. V. Voorhis, Phys. Rev. Lett. 103, 063004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.063004
82.
82. A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005).
http://dx.doi.org/10.1063/1.2065267
83.
83. J. Tao, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. U.S.A. 109, 18 (2012).
http://dx.doi.org/10.1073/pnas.1118245108
84.
84. V. Petrenko and R. W. Whitworth, Physics of Ice (Oxford University Press, New York, 2003).
85.
85. C. G. Salzmann, P. G. Radaelli, E. Mayer, and J. L. Finney, Phys. Rev. Lett. 103, 105701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105701
86.
86. C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, and J. L. Finney, in Physics and Chemistry of Ice, edited by W. F. Kuhs (The Royal Society of Chemistry, Cambridge, 2007), pp. 521528.
87.
87. C. G. Salzmann, P. G. Radaelli, B. Slater, and J. L. Finney, Phys. Chem. Chem. Phys. 13, 18468 (2011).
http://dx.doi.org/10.1039/c1cp21712g
88.
88. E. Whalley, J. Chem. Phys. 81, 4087 (1984).
http://dx.doi.org/10.1063/1.448153
89.
89. A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
90.
90. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
91.
91. D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084203
92.
92. A. Tkatchenko, L. Romaner, O. T. Hofmann, E. Zojer, and C. Ambrosch-Draxl, MRS Bull. 35, 435 (2010).
http://dx.doi.org/10.1557/mrs2010.581
93.
93. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
94.
94. R. A. DiStasio, Jr., O. A. von Lilienfeld, and A. Tkatchenko, Proc. Natl. Acad. Sci. U.S.A. 109, 14791 (2012).
http://dx.doi.org/10.1073/pnas.1208121109
95.
95. J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
96.
96. A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028 (2013).
http://dx.doi.org/10.1021/jz400226x
97.
97. A. K. Kelkkanen, B. I. Lundqvist, and J. K. Nørskov, J. Chem. Phys. 131, 046102 (2009).
http://dx.doi.org/10.1063/1.3193462
98.
98. C. M. B. Line and R. W. Whitworth, J. Chem. Phys. 104, 10008 (1996).
http://dx.doi.org/10.1063/1.471745
99.
99. J. D. Londono, W. F. Kuhs, and J. L. Finney, J. Chem. Phys. 98, 4878 (1993).
http://dx.doi.org/10.1063/1.464942
100.
100. C. Lobban, J. L. Finney, and W. F. Kuhs, J. Chem. Phys. 117, 3928 (2002).
http://dx.doi.org/10.1063/1.1495837
101.
101. C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, and J. L. Finney, Science 311, 1758 (2006).
http://dx.doi.org/10.1126/science.1123896
102.
102. W. F. Kuhs, J. L. Finney, C. Vettier, and D. V. Bliss, J. Chem. Phys. 81, 3612 (1984).
http://dx.doi.org/10.1063/1.448109
103.
103. D. Pan, L.-M. Liu, G. A. Tribello, B. Slater, A. Michaelides, and E. Wang, J. Phys.: Condens. Matter 22, 074209 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/074209
104.
104. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
105.
105. F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
106.
106. B. Santra, “Density-functional theory exchange-correlation functionals for hydrogen bonds in water,” Ph.D. thesis (Fritz-Haber-Institut der Max-Planck Gesellschaft, TU-Berlin, 2010).
107.
107. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
108.
108. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
109.
109. P. Jurečka, J. Šponer, J. Černý, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).
http://dx.doi.org/10.1039/b600027d
110.
110. E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
111.
111. V. Blum et al., Comput. Phys. Commun. 180, 2175 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.06.022
112.
112. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
113.
113. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
114.
114. G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.096102
115.
115. K. Röttger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs, Acta Cryst. B50, 644 (1994).
http://dx.doi.org/10.1107/S0108768194004933
116.
116. J. Carrasco, B. Santra, J. Klimeš, and A. Michaelides, Phys. Rev. Lett. 106, 026101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.026101
117.
117. A. Gulans, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 79, 201105(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201105
118.
118.Frequency calculations have not been performed for any of the PBE0 based functionals. For PBE0 we have estimated the ZPE corrected volumes by considering the volume changes found with PBE. For PBE0+vdWTS and PBE0+vdWMB ZPE corrected volumes are estimated with the volume changes obtained with PBE+vdWTS.
119.
119. G. S. Kell and E. Whalley, J. Chem. Phys. 48, 2359 (1968).
http://dx.doi.org/10.1063/1.1669437
120.
120.In case of vdWTS molecular C6 coefficients are calculated by using Eq. (10) in Ref. 75 and for the vdW-DFs we have used the long distance behavior of the kernel as given by Eq. (17) in Ref. 74 and in Eq. (23.5) in Ref. 130. The vdW-DF C6 coefficients vary only within 1% when using different PAW potentials or norm-conserving pseudopotentials, however, they depend significantly on the functional employed to calculate the electron density. For example, the C6 coefficient of an isolated water molecule is reduced to 45.5 a.u. when Hartree-Fock electron density is used. Likewise, the vdW-DF C6 coefficients of an isolated water molecule obtained here are 20%–24% larger than the values reported in Ref. 121 where electron densities were calculated using a so-called long-range corrected hybrid functional which is expected to give densities similar to those given by Hartree-Fock.
121.
121. O. A. Vydrov and T. V. Voorhis, Phys. Rev. A 81, 062708 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.062708
122.
122. L. A. Burns, Álvaro Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011).
http://dx.doi.org/10.1063/1.3545971
123.
123. D. Lu, Y. Li, D. Rocca, and G. Galli, Phys. Rev. Lett. 102, 206411 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.206411
124.
124. L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nature Mater. 9, 741 (2010).
http://dx.doi.org/10.1038/nmat2806
125.
125. A. Grüneis, M. Marsman, and G. Kresse, J. Chem. Phys. 133, 074107 (2010).
http://dx.doi.org/10.1063/1.3466765
126.
126. C. J. Pickard and R. J. Needs, J. Chem. Phys. 127, 244503 (2007).
http://dx.doi.org/10.1063/1.2812268
127.
127. J. M. McMahon, Phys. Rev. B 84, 220104(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.220104
128.
128. A. Hermanna, N. W. Ashcroft, and R. Hoffmann, Proc. Natl. Acad. Sci. U.S.A. 109, 745 (2012).
http://dx.doi.org/10.1073/pnas.1118694109
129.
129. C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. Lett. 110, 245701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.245701
130.
130. O. A. Vydrov, and T. Van Voorhis, in Fundamentals of Time-Dependent Density Functional Theory, edited by M. A. L. Marques, N. Maitra, F. Nogueira, E. K. U. Gross, and A. Rubio (Springer, Berlin, 2012).
131.
131.See supplementary material at http://dx.doi.org/10.1063/1.4824481 for coordinates of all ice phases optimized with all xc functionals considered here. [Supplementary Material]
132.
132. D. J. Margoliash and W. J. Meath, J. Chem. Phys. 68, 1426 (1978).
http://dx.doi.org/10.1063/1.435963
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4824481
Loading
/content/aip/journal/jcp/139/15/10.1063/1.4824481
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/15/10.1063/1.4824481
2013-10-15
2016-12-03

Abstract

Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation () functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several functionals (semi-local, hybrid, and vdW inclusive approaches) on ice I and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett.107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/15/1.4824481.html;jsessionid=_LiqFuUBC0vOJMt4wZKfh9-1.x-aip-live-06?itemId=/content/aip/journal/jcp/139/15/10.1063/1.4824481&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/15/10.1063/1.4824481&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/15/10.1063/1.4824481'
Right1,Right2,Right3,