1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/15/10.1063/1.4824681
1.
1. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991).
2.
2. E. J. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
3.
3. R. J. Hunter, Foundations of Colloidal Science, 2nd ed. (Oxford University Press, New York, 2001).
4.
4. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley Publishing Co., Reading, MA, 1994).
5.
5. Soft Condensed Matter Physics in Molecular and Cell Biology, edited by W. C. K. Poon and D. Andelman (Taylor & Francis, New York, London, 2006).
6.
6. Electrostatic Effects in Soft Matter and Biophysics, edited by C. Holm, P. Kekicheff, and R. Podgornik (Kluwer Academic, Dordrecht, 2001).
7.
7. R. French et al., Rev. Mod. Phys. 82, 1887 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1887
8.
8. M. Baus and J. Hansen, Phys. Rep. 59, 1 (1980).
http://dx.doi.org/10.1016/0370-1573(80)90022-8
9.
9. A. Khan, B. Jönsson, and H. Wennerström, J. Phys. Chem. 89, 5180 (1985).
http://dx.doi.org/10.1021/j100270a012
10.
10. R. Kjellander, S. Marčelja, and J. P. Quirk, J. Colloid Interface Sci. 126, 194 (1988).
http://dx.doi.org/10.1016/0021-9797(88)90113-0
11.
11. V. A. Bloomfield, Biopolymers 31, 1471 (1991).
http://dx.doi.org/10.1002/bip.360311305
12.
12. V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).
http://dx.doi.org/10.1016/S0959-440X(96)80052-2
13.
13. P. Kékicheff, S. Marčelja, T. J. Senden, and V. E. Shubin, J. Chem. Phys. 99, 6098 (1993).
http://dx.doi.org/10.1063/1.465906
14.
14. P. Gonzalez-Monzuelos and M. Olvera de la Cruz, J. Chem. Phys. 103, 3145 (1995).
http://dx.doi.org/10.1063/1.470248
15.
15. M. Olvera de la Cruz, L. Belloni, M. Delsanti, J. P. Dalbiez, O. Spalla, and M. Drifford, J. Chem. Phys. 103, 5781 (1995).
http://dx.doi.org/10.1063/1.470459
16.
16. M. Dubois, T. Zemb, N. Fuller, R. P. Rand, and V. A. Parsegian, J. Chem. Phys. 108, 7855 (1998).
http://dx.doi.org/10.1063/1.476505
17.
17. H. H. Strey, R. Podgornik, D. C. Rau, and V. A. Parsegian, Curr. Opin. Struct. Biol. 8, 309 (1998).
http://dx.doi.org/10.1016/S0959-440X(98)80063-8
18.
18. J. X. Tang, T. Ito, T. Tao, P. Traub, and P. A. Janmey, Biochemistry 36, 12600 (1997).
http://dx.doi.org/10.1021/bi9711386
19.
19. G. C. L. Wong, A. Lin, J. X. Tang, Y. Li, P. A. Janmey, and C. R. Safinya, Phys. Rev. Lett. 91, 018103 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.018103
20.
20. J. C. Butler, T. Angelini, J. X. Tang, and G. C. L. Wong, Phys. Rev. Lett. 91, 028301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.028301
21.
21. T. E. Angelini, H. Liang, W. Wriggers, and G. C. L. Wong, Proc. Natl. Acad. Sci. U.S.A. 100, 8634 (2003).
http://dx.doi.org/10.1073/pnas.1533355100
22.
22. G. C. L. Wong and L. Pollack, Annu. Rev. Phys. Chem. 61, 171 (2010).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104436
23.
23. L. Guldbrand, B. Jönsson, H. Wennerström, and P. Linse, J. Chem. Phys. 80, 2221 (1984).
http://dx.doi.org/10.1063/1.446912
24.
24. B. Svensson and B. Jönsson, Chem. Phys. Lett. 108, 580 (1984).
http://dx.doi.org/10.1016/0009-2614(84)85058-7
25.
25. D. Bratko, B. Jönsson, and H. Wennerström, Chem. Phys. Lett. 128, 449 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80652-2
26.
26. L. Guldbrand, L. G. Nilsson, and L. Nordenskiöld, J. Chem. Phys. 85, 6686 (1986).
http://dx.doi.org/10.1063/1.451450
27.
27. C. E. Woodward, B. Jönsson, and T. Åkesson, J. Chem. Phys. 89, 5145 (1988).
http://dx.doi.org/10.1063/1.455632
28.
28. J. P. Valleau, R. Ivkov, and G. M. Torrie, J. Chem. Phys. 95, 520 (1991).
http://dx.doi.org/10.1063/1.461452
29.
29. R. Kjellander, T. Åkesson, B. Jönsson, and S. Marčelja, J. Chem. Phys. 97, 1424 (1992).
http://dx.doi.org/10.1063/1.463218
30.
30. A. P. Lyubartsev and L. Nordenskiöld, J. Phys. Chem. 99, 10373 (1995).
http://dx.doi.org/10.1021/j100025a046
31.
31. N. Grønbech-Jensen, R. J. Mashl, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2477
32.
32. N. Grønbech-Jensen, K. M. Beardmore, and P. Pincus, Physica A 261, 74 (1998).
http://dx.doi.org/10.1016/S0378-4371(98)00369-0
33.
33. J. Wu, D. Bratko, and J. M. Prausnitz, Proc. Natl. Acad. Sci. U.S.A. 95, 15169 (1998).
http://dx.doi.org/10.1073/pnas.95.26.15169
34.
34. E. Allahyarov, I. D’Amico, and H. Löwen, Phys. Rev. Lett. 81, 1334 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1334
35.
35. M. J. Stevens, Phys. Rev. Lett. 82, 101 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.101
36.
36. P. Linse and V. Lobaskin, Phys. Rev. Lett. 83, 4208 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4208
37.
37. P. Linse and V. Lobaskin, J. Chem. Phys. 112, 3917 (2000).
http://dx.doi.org/10.1063/1.480943
38.
38. B. Hribar and V. Vlachy, Biophys. J. 78, 694 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76627-6
39.
39. R. Messina, C. Holm, and K. Kremer, Phys. Rev. Lett. 85, 872 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.872
40.
40. M. Deserno, A. Arnold, and C. Holm, Macromolecules 36, 249 (2003).
http://dx.doi.org/10.1021/ma020923+
41.
41. K.-C. Lee, I. Borukhov, W. M. Gelbart, A. J. Liu, and M. J. Stevens, Phys. Rev. Lett. 93, 128101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.128101
42.
42. A. Naji and R. R. Netz, Phys. Rev. Lett. 95, 185703 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.185703
43.
43. A. Naji and R. R. Netz, Phys. Rev. E 73, 056105 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056105
44.
44. A. G. Moreira and R. R. Netz, Europhys. Lett. 52, 705 (2000).
http://dx.doi.org/10.1209/epl/i2000-00495-1
45.
45. A. G. Moreira and R. R. Netz, Phys. Rev. Lett. 87, 078301 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.078301
46.
46. A. G. Moreira and R. R. Netz, Eur. Phys. J. E 8, 33 (2002).
http://dx.doi.org/10.1140/epje/i2001-10091-9
47.
47. A. G. Moreira and R. R. Netz, Europhys. Lett. 57, 911 (2002).
http://dx.doi.org/10.1209/epl/i2002-00597-2
48.
48. A. Naji, A. Arnold, C. Holm, and R. R. Netz, Europhys. Lett. 67, 130 (2004).
http://dx.doi.org/10.1209/epl/i2003-10275-y
49.
49. A. Naji and R. R. Netz, Eur. Phys. J. E 13, 43 (2004).
http://dx.doi.org/10.1140/epje/e2004-00039-x
50.
50. H. Boroudjerdi, Y. W. Kim, A. Naji, R. R. Netz, X. Schlagberger, and A. Serr, Phys. Rep. 416, 129 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.06.006
51.
51. A. Naji, S. Jungblut, A. G. Moreira, and R. R. Netz, Physica A 352, 131 (2005).
http://dx.doi.org/10.1016/j.physa.2004.12.029
52.
52. A. Naji, M. Kanduc, R. R. Netz, and R. Podgornik, in Understanding Soft Condensed Matter via Modeling and Computation, edited by W.-B. Hu and A.-C. Shi, Series in Soft Condensed Matter Vol. 3, edited by D. Andelman and G. Reiter (World Scientific, Singapore, 2010), Chap. 9;
52.e-print arXiv:1008.0357.
53.
53. M. Kanduč, A. Naji, J. Forsman, and R. Podgornik, J. Chem. Phys. 132, 124701 (2010).
http://dx.doi.org/10.1063/1.3361672
54.
54. M. Kanduč, A. Naji, J. Forsman, and R. Podgornik, Phys. Rev. E 84, 011502 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011502
55.
55. M. Kanduč, A. Naji, J. Forsman, and R. Podgornik, J. Chem. Phys. 137, 174704 (2012).
http://dx.doi.org/10.1063/1.4763472
56.
56. Y. S. Jho, M. Kanduč, A. Naji, R. Podgornik, M. W. Kim, and P. A. Pincus, Phys. Rev. Lett. 101, 188101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.188101
57.
57. M. Kanduč, M. Trulsson, A. Naji, Y. Burak, J. Forsman, and R. Podgornik, Phys. Rev. E 78, 061105 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061105
58.
58. Y.-G. Chen and J. D. Weeks, Proc. Natl. Acad. Sci. U.S.A. 103, 7560 (2006).
http://dx.doi.org/10.1073/pnas.0600282103
59.
59. J. M. Rodgers, C. Kaur, Y.-G. Chen, and J. D. Weeks, Phys. Rev. Lett. 97, 097801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.097801
60.
60. J. Forsman, J. Phys. Chem. B 108, 9236 (2004).
http://dx.doi.org/10.1021/jp049571u
61.
61. M. Trulsson, B. Jönsson, T. Åkesson, J. Forsman, and C. Labbez, Phys. Rev. Lett. 97, 068302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.068302
62.
62. R. Kjellander and S. Marčelja, Chem. Phys. Lett. 112, 49 (1984).
http://dx.doi.org/10.1016/0009-2614(84)87039-6
63.
63. R. Kjellander and S. Marčelja, J. Chem. Phys. 82, 2122 (1985).
http://dx.doi.org/10.1063/1.448350
64.
64. P. Attard, R. Kjellander, and D. J. Mitchell, Chem. Phys. Lett. 139, 219 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80182-3
65.
65. P. Attard, D. J. Mitchell, and B. W. Ninham, J. Chem. Phys. 88, 4987 (1988).
http://dx.doi.org/10.1063/1.454678
66.
66. R. Podgornik and B. Žekš, J. Chem. Soc., Faraday Trans. 2 84, 611 (1988).
http://dx.doi.org/10.1039/f29888400611
67.
67. R. Podgornik, J. Phys. A: Math. Gen. 23, 275 (1990).
http://dx.doi.org/10.1088/0305-4470/23/3/012
68.
68. R. Podgornik and V. A. Parsegian, Phys. Rev. Lett. 80, 1560 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1560
69.
69. J.-L. Barrat and J.-F. Joanny, Adv. Chem. Phys. XCIV, 1 (1996).
http://dx.doi.org/10.1002/9780470141533.ch1
70.
70. P. A. Pincus and S. A. Safran, Europhys. Lett. 42, 103 (1998).
http://dx.doi.org/10.1209/epl/i1998-00559-8
71.
71. B.-Y. Ha and A. J. Liu, Phys. Rev. Lett. 79, 1289 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1289
72.
72. B.-Y. Ha and A. J. Liu, Phys. Rev. Lett. 81, 1011 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1011
73.
73. D. B. Lukatsky and S. A. Safran, Phys. Rev. E 60, 5848 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.5848
74.
74. A. W. C. Lau, D. B. Lukatsky, P. Pincus, and S. A. Safran, Phys. Rev. E 65, 051502 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.051502
75.
75. M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1233
76.
76. B.-Y. Ha, Phys. Rev. E 64, 031507 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.031507
77.
77. A. W. C. Lau and P. Pincus, Phys. Rev. E 66, 041501 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.041501
78.
78. R. R. Netz and H. Orland, Eur. Phys. J. E 1, 203 (2000).
http://dx.doi.org/10.1007/s101890050023
79.
79. R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003).
http://dx.doi.org/10.1140/epje/i2002-10159-0
80.
80. S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. E 81, 041601 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.041601
81.
81. S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. Lett. 105, 158103 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.158103
82.
82. S. Buyukdagli, M. Manghi, and J. Palmeri, J. Chem. Phys. 134, 074706 (2011).
http://dx.doi.org/10.1063/1.3526940
83.
83. M. J. Stevens and M. O. Robbins, Europhys. Lett. 12, 81 (1990).
http://dx.doi.org/10.1209/0295-5075/12/1/015
84.
84. A. Diehl, M. N. Tamashiro, M. C. Barbosa, and Y. Levin, Physica A 274, 433 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00374-X
85.
85. O. Gonzalez-Amezcua, M. Hernandez-Contreras, and P. Pincus, Phys. Rev. E 64, 041603 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.041603
86.
86. I. Rouzina and V. A. Bloomfield, J. Phys. Chem. 100, 9977 (1996).
http://dx.doi.org/10.1021/jp960458g
87.
87. A. A. Kornyshev and S. Leikin, J. Chem. Phys. 107, 3656 (1997).
http://dx.doi.org/10.1063/1.475320
88.
88. J. J. Arenzon, J. F. Stilck, and Y. Levin, Eur. Phys. J. B 12, 79 (1999).
http://dx.doi.org/10.1007/s100510050980
89.
89. Y. Levin, J. J. Arenzon, and J. F. Stilck, Phys. Rev. Lett. 83, 2680 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2680
90.
90. B. I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3268
91.
91. A. Yu. Grosberg, T. T. Nguyen, and B. I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.329
92.
92. A. Diehl, H. A. Carmona, and Y. Levin, Phys. Rev. E 64, 011804 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.011804
93.
93. A. W. C. Lau, D. Levine, and P. Pincus, Phys. Rev. Lett. 84, 4116 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4116
94.
94. R. R. Netz, Eur. Phys. J. E 5, 557 (2001).
http://dx.doi.org/10.1007/s101890170039
95.
95. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).
http://dx.doi.org/10.1088/0034-4885/65/11/201
96.
96. Y. Burak, D. Andelman, and H. Orland, Phys. Rev. E 70, 016102 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.016102
97.
97. C. D. Santangelo, Phys. Rev. E 73, 041512 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041512
98.
98. M. M. Hatlo and L. Lue, Soft Matter 5, 125 (2009).
http://dx.doi.org/10.1039/b815578j
99.
99. L. Šamaj and E. Trizac, Phys. Rev. Lett. 106, 078301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.078301
100.
100. L. Šamaj and E. Trizac, Phys. Rev. E 84, 041401 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.041401
101.
101. P. Duncan, M. M. Hatlo, and L. Lue, in Electrostatics of Soft and Disordered Matter, edited by D. S. Dean, J. Dobnikar, A. Naji, and R. Podgornik (Pan Stanford Publishing, Singapore, in press), Chap. 2.
102.
102. M. Kanduč, J. Dobnikar, and R. Podgornik, Soft Matter 5, 868 (2009).
http://dx.doi.org/10.1039/b811795k
103.
103. M. Kanduc, A. Naji, and R. Podgornik, J. Chem. Phys. 132, 224703 (2010).
http://dx.doi.org/10.1063/1.3430744
104.
104. M. Kanduč and R. Podgornik, Eur. Phys. J. E 23, 265 (2007).
http://dx.doi.org/10.1140/epje/i2007-10187-2
105.
105. I. Rouzina and V. A. Bloomfield, Biophys. J. 74, 3152 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)78021-X
106.
106. R. Golestanian, M. Kardar, and T. B. Liverpool, Phys. Rev. Lett. 82, 4456 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4456
107.
107. Y. Levin, Physica A 265, 432 (1999).
http://dx.doi.org/10.1016/S0378-4371(98)00552-4
108.
108. T. T. Nguyen, I. Rouzina, and B. I. Shklovskii, J. Chem. Phys. 112, 2562 (2000).
http://dx.doi.org/10.1063/1.480819
109.
109. O. Punkkinen, A. Naji, R. Podgornik, I. Vattulainen, and P.-L. Hansen, Europhys. Lett. 82, 48001 (2008).
http://dx.doi.org/10.1209/0295-5075/82/48001
110.
110. R. Messina, J. Phys.: Condens. Matter 21, 113102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/11/113102
111.
111. F. Oosawa, Biopolymers 6, 1633 (1968).
http://dx.doi.org/10.1002/bip.1968.360061108
112.
112. F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).
113.
113. G. N. Patey, J. Chem. Phys. 72, 5763 (1980).
http://dx.doi.org/10.1063/1.438997
114.
114. J. Ray and G. S. Manning, Macromolecules 30, 5739 (1997).
http://dx.doi.org/10.1021/ma970405c
115.
115. D. J. Needleman, M. A. Ojeda-Lopez, U. Raviv, H. P. Miller, L. Wilson, and C. R. Safinya, Proc. Natl. Acad. Sci. U.S.A. 101, 16099 (2004).
http://dx.doi.org/10.1073/pnas.0406076101
116.
116. J. Pelta, D. Durand, J. Doucet, and F. Livolant, Biophys. J. 71, 48 (1996);
http://dx.doi.org/10.1016/S0006-3495(96)79232-9
116.J. Pelta, F. Livolant, and J.-L. Sikorav, J. Biol. Chem. 271, 5656 (1996).
http://dx.doi.org/10.1074/jbc.271.10.5656
117.
117. K. Yoshikawa, Adv. Drug Deliv. Rev. 52, 235 (2001).
http://dx.doi.org/10.1016/S0169-409X(01)00210-1
118.
118. M. Takahashi, K. Yoshikawa, V. V. Vasilevskaya, and A. R. Khokhlov, J. Phys. Chem. B 101, 9396 (1997).
http://dx.doi.org/10.1021/jp9716391
119.
119. G. E. Plum and V. A. Bloomfield, Biopolymers 27, 1045 (1988).
http://dx.doi.org/10.1002/bip.360270611
120.
120. E. Raspaud, I. Chaperon, A. Leforestier, and F. Livolant, Biophys. J. 77, 1547 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77002-5
121.
121. H. S. Savithri, S. K. Munshi, S. Suryanarayana, S. Divakar, and M. R. N. Murthy, J. Gen. Virol. 68, 1533 (1987).
http://dx.doi.org/10.1099/0022-1317-68-6-1533
122.
122. M. de Frutos, S. Brasiles, P. Tavares, and E. Raspaud, Eur. Phys. J. E 17, 429 (2005).
http://dx.doi.org/10.1140/epje/i2005-10019-5
123.
123. A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, Biophys. J. 100, 2209 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.03.012
124.
124. D. S. Dean, R. R. Horgan, and D. Sentenac, J. Stat. Phys. 90, 899 (1998).
http://dx.doi.org/10.1023/A:1023241407140
125.
125. D. S. Dean, R. R. Horgan, A. Naji, and R. Podgornik, J. Chem. Phys. 130, 094504 (2009).
http://dx.doi.org/10.1063/1.3078492
126.
126. D. Ben-Yaakov, D. Andelman, D. Harries, and R. Podgornik, J. Phys.: Condens. Matter 21, 424106 (2009).
http://dx.doi.org/10.1088/0953-8984/21/42/424106
127.
127. D. Ben-Yaakov, D. Andelman, and R. Podgornik, J. Chem. Phys. 134, 074705 (2011).
http://dx.doi.org/10.1063/1.3549915
128.
128. D. Ben-Yaakov, D. Andelman, R. Podgornik, and D. Harries, Curr. Opin. Colloid Interface Sci. 16, 542 (2011).
http://dx.doi.org/10.1016/j.cocis.2011.04.012
129.
129. Y. Burak and D. Andelman, Phys. Rev. E 62, 5296 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.5296
130.
130. Y. Burak and D. Andelman, J. Chem. Phys. 114, 3271 (2001).
http://dx.doi.org/10.1063/1.1331569
131.
131. P. Debye, Polar Molecules (Dover, New York, 1929).
132.
132. J. J. Bikerman, Philos. Mag. 33, 384 (1942).
http://dx.doi.org/10.1080/14786444208520813
133.
133. M. Kanduč, A. Naji, Y. S. Jho, P. A. Pincus, and R. Podgornik, J. Phys.: Condens. Matter 21, 424103 (2009).
http://dx.doi.org/10.1088/0953-8984/21/42/424103
134.
134. V. Démery, D. S. Dean, and R. Podgornik, J. Chem. Phys. 137, 174903 (2012).
http://dx.doi.org/10.1063/1.4763986
135.
135. M. M. Hatlo, R. van Roij, and L. Lue, Europhys. Lett. 97, 28010 (2012).
http://dx.doi.org/10.1209/0295-5075/97/28010
136.
136. R. R. Netz, Eur. Phys. J. E 5, 189 (2001).
http://dx.doi.org/10.1007/s101890170075
137.
137. D. Horinek and R. R. Netz, Phys. Rev. Lett. 99, 226104 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.226104
138.
138. A. A. Kornyshev, J. Phys. Chem. B 111, 5545 (2007).
http://dx.doi.org/10.1021/jp067857o
139.
139. V. Démery, D. S. Dean, T. C. Hammant, R. R. Horgan, and R. Podgornik, Europhys. Lett. 97, 28004 (2012).
http://dx.doi.org/10.1209/0295-5075/97/28004
140.
140. V. Démery, D. S. Dean, T. C. Hammant, R. R. Horgan, and R. Podgornik, J. Chem. Phys. 137, 064901 (2012).
http://dx.doi.org/10.1063/1.4740233
141.
141. O. Spalla and L. Belloni, Phys. Rev. Lett. 74, 2515 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2515
142.
142. J. Forsman, Langmuir 22, 2975 (2006).
http://dx.doi.org/10.1021/la0600393
143.
143. I. Borukhov, D. Andelman, and H. Orland, Eur. Phys. J. B 5, 869 (1998).
http://dx.doi.org/10.1007/s100510050513
144.
144. Y. Kantor and M. Kardar, Europhys. Lett. 28, 169 (1994).
http://dx.doi.org/10.1209/0295-5075/28/3/003
145.
145. E. E. Meyer, Q. Lin, T. Hassenkam, E. Oroudjev, and J. N. Israelachvili, Proc. Natl. Acad. Sci. U.S.A. 102, 6839 (2005).
http://dx.doi.org/10.1073/pnas.0502110102
146.
146. S. Perkin, N. Kampf, and J. Klein, Phys. Rev. Lett. 96, 038301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.038301
147.
147. D. Ben-Yaakov, D. Andelman, and H. Diamant, Phys. Rev. E 87, 022402 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.022402
148.
148. C. Fleck and R. R. Netz, Europhys. Lett. 70, 341 (2005).
http://dx.doi.org/10.1209/epl/i2004-10500-3
149.
149. A. Naji and R. Podgornik, Phys. Rev. E 72, 041402 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.041402
150.
150. R. Podgornik and A. Naji, Europhys. Lett. 74, 712 (2006).
http://dx.doi.org/10.1209/epl/i2006-10019-7
151.
151. Y. Sh. Mamasakhlisov, A. Naji, and R. Podgornik, J. Stat. Phys. 133, 659 (2008).
http://dx.doi.org/10.1007/s10955-008-9635-7
152.
152. A. Naji, D. S. Dean, J. Sarabadani, R. Horgan, and R. Podgornik, Phys. Rev. Lett. 104, 060601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.060601
153.
153. J. Sarabadani, A. Naji, D. S. Dean, R. R. Horgan, and R. Podgornik, J. Chem. Phys. 133, 174702 (2010).
http://dx.doi.org/10.1063/1.3497039
154.
154. D. S. Dean, A. Naji, and R. Podgornik, Phys. Rev. E 83, 011102 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.011102
155.
155. A. Naji, J. Sarabadani, D. S. Dean, and R. Podgornik, Eur. Phys. J. E 35, 24 (2012).
http://dx.doi.org/10.1140/epje/i2012-12024-y
156.
156. V. Rezvani, J. Sarabadani, A. Naji, and R. Podgornik, J. Chem. Phys. 137, 114704 (2012).
http://dx.doi.org/10.1063/1.4752248
157.
157. B. W. Ninham and V. A. Parsegian, J. Theor. Biol. 31, 405 (1971).
http://dx.doi.org/10.1016/0022-5193(71)90019-1
158.
158. D. Chan, J. W. Perram, L. R. White, and T. H. Healy, J. Chem. Soc., Faraday Trans. 1 71, 1046 (1975).
http://dx.doi.org/10.1039/f19757101046
159.
159. H. H. von Grünberg, J. Colloid Interface Sci. 219, 339 (1999).
http://dx.doi.org/10.1006/jcis.1999.6487
160.
160. G. S. Longo, M. Olvera de la Cruz, and I. Szleifer, Soft Matter 8, 1344 (2012).
http://dx.doi.org/10.1039/c1sm06708g
161.
161. G. S. Longo, M. Olvera de la Cruz, and I. Szleifer, ACS Nano 7, 2693 (2013).
http://dx.doi.org/10.1021/nn400130c
162.
162. J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, Phys. Rev. E 69, 031402 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.031402
163.
163. J. Dobnikar, Y. Chen, R. Rzehak, and H. H. Grünberg, J. Phys.: Condens. Matter 15, S263 (2003).
http://dx.doi.org/10.1088/0953-8984/15/1/335
164.
164. N. Bjerrum, Kgl. Dan. Videnskab. Selsk. Mat. Fys. Medd. 7, 1 (1926).
165.
165. J. Zwanikken and R. van Roij, J. Phys.: Condens. Matter 21, 424102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/42/424102
166.
166. M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3826
167.
167. S. F. Edwards and A. Lenard, J. Math. Phys. 3, 778 (1962).
http://dx.doi.org/10.1063/1.1724281
168.
168. D. Henderson and L. Blum, J. Chem. Phys. 75, 2025 (1981).
http://dx.doi.org/10.1063/1.442238
169.
169. H. Wennerström, B. Jönsson, and P. Linse, J. Chem. Phys. 76, 4665 (1982).
http://dx.doi.org/10.1063/1.443547
170.
170. D. S. Dean and R. R. Horgan, Phys. Rev. E 68, 061106 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.061106
171.
171. J. C. Neu, Phys. Rev. Lett. 82, 1072 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1072
172.
172. J. E. Sader and D. Y. C. Chan, J. Colloid Interface Sci. 213, 268 (1999).
http://dx.doi.org/10.1006/jcis.1999.6131
173.
173. J. E. Sader and D. Y. C. Chan, Langmuir 16, 324 (2000).
http://dx.doi.org/10.1021/la990738y
174.
174. V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2005).
175.
175. V. Vlachy, Annu. Rev. Phys. Chem. 50, 145 (1999).
http://dx.doi.org/10.1146/annurev.physchem.50.1.145
176.
176. G. Lamm, Reviews in Computational Chemistry, edited by K. B. Lipkowitz, R. Larter, and T. R. Cundari (Wiley-VCH, 2003), Vol. 19, pp. 147365.
177.
177. D. C. Rau and V. A. Parsegian, Biophys. J. 61, 246 (1992).
http://dx.doi.org/10.1016/S0006-3495(92)81831-3
178.
178. D. C. Rau and V. A. Parsegian, Biophys. J. 61, 260 (1992).
http://dx.doi.org/10.1016/S0006-3495(92)81832-5
179.
179. J. W. Zwanikken and M. Olvera de la Cruz, Proc. Natl. Acad. Sci. U.S.A. 110, 5301 (2013).
http://dx.doi.org/10.1073/pnas.1302406110
180.
180. S. Buyukdagli and T. Ala-Nissila, Europhys. Lett. 98, 60003 (2012).
http://dx.doi.org/10.1209/0295-5075/98/60003
181.
181. H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction (Springer, New York, 2011).
182.
182. A. Abrashkin, D. Andelman, and H. Orland, Phys. Rev. Lett. 99, 077801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.077801
183.
183. S. Maset and K. Bohinc, J. Phys. A: Math. Theor. 40, 11815 (2007).
http://dx.doi.org/10.1088/1751-8113/40/39/008
184.
184. Y. W. Kim, J. Yi, and P. A. Pincus, Phys. Rev. Lett. 101, 208305 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.208305
185.
185. S. Maset, J. Reščič, S. May, J. I. Pavlič, and K. Bohinc, J. Phys. A: Math. Theor. 42, 105401 (2009).
http://dx.doi.org/10.1088/1751-8113/42/10/105401
186.
186. Z.-G. Wang, Phys. Rev. E 81, 021501 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.021501
187.
187. B. E. Conway, Ionic Hydration in Chemistry and Biophysics (Elsevier, New York, 1981).
188.
188. D. Frydel, J. Chem. Phys. 134, 234704 (2011).
http://dx.doi.org/10.1063/1.3598476
189.
189. S. Buyukdagli and T. Ala-Nissila, Phys. Rev. E 87, 063201 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.063201
190.
190. S. Buyukdagli and T. Ala-Nissila, J. Chem. Phys. 139, 044907 (2013).
http://dx.doi.org/10.1063/1.4816011
191.
191. J. R. Bordin and C. Holm, “Influence of static polarization in counterions distribution near charged surfaces: A coarse-grained molecular dynamics study” (unpublished).
192.
192. B. W. Ninham and V. Yaminsky, Langmuir 13, 2097 (1997).
http://dx.doi.org/10.1021/la960974y
193.
193. P. Lo Nostro and B. Ninham, Chem. Rev. 112, 2286 (2012).
http://dx.doi.org/10.1021/cr200271j
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4824681
Loading
/content/aip/journal/jcp/139/15/10.1063/1.4824681
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/15/10.1063/1.4824681
2013-10-14
2014-08-30

Abstract

We present a personal view on the current state of statistical mechanics of Coulomb fluids with special emphasis on the interactions between macromolecular surfaces, concentrating on the and the coupling limits. Both are introduced for a (primitive) counterion-only system in the presence of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we show how this formalism can be generalized to the cases with additional characteristic length scales that introduce new coupling parameters into the problem. These cases most notably include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak and strong coupling limits can be constructed by analogy with the counterion-only case and lead to important new insights into their properties that cannot be derived by any other means.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/15/1.4824681.html;jsessionid=bun09a6ckr98.x-aip-live-06?itemId=/content/aip/journal/jcp/139/15/10.1063/1.4824681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4824681
10.1063/1.4824681
SEARCH_EXPAND_ITEM