1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/15/10.1063/1.4826163
1.
1. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
http://dx.doi.org/10.1063/1.1742723
2.
2. R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).
http://dx.doi.org/10.1146/annurev.pc.15.100164.001103
3.
3. S. Shin and H. Metiu, J. Chem. Phys. 102, 9285 (1995).
http://dx.doi.org/10.1063/1.468795
4.
4. R. E. Cline Jr. and P. G. Wolynes, J. Chem. Phys. 86, 3836 (1987).
http://dx.doi.org/10.1063/1.451942
5.
5. J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 89, 4833 (1988).
http://dx.doi.org/10.1063/1.455678
6.
6. Y. Zhao and W. Liang, Front. Chem. China 5, 423 (2010).
http://dx.doi.org/10.1007/s11458-010-0219-0
7.
7. H. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys. 112, 47 (2000).
http://dx.doi.org/10.1063/1.480560
8.
8. H. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys. 110, 4828 (1999).
http://dx.doi.org/10.1063/1.478388
9.
9. H. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. 108, 9726 (1998).
http://dx.doi.org/10.1063/1.476447
10.
10. E. Rabani, S. A. Egorov, and B. J. Berne, J. Phys. Chem. A 103, 9539 (1999).
http://dx.doi.org/10.1021/jp992189a
11.
11. Q. Shi and E. Geva, J. Phys. Chem. A 108, 6109 (2004).
http://dx.doi.org/10.1021/jp049547g
12.
12. W. Xie, S. Bai, L. Zhu, and Q. Shi, J. Phys. Chem. A 117, 6196 (2013).
http://dx.doi.org/10.1021/jp400462f
13.
13. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983);
http://dx.doi.org/10.1016/0003-4916(83)90202-6
13.W. H. Miller, J. Chem. Phys. 62, 1899 (1975).
http://dx.doi.org/10.1063/1.430676
14.
14. J. Cao and G. A. Voth, J. Chem. Phys. 106, 1769 (1997).
http://dx.doi.org/10.1063/1.474123
15.
15. S. Jang and J. Cao, J. Chem. Phys. 114, 9959 (2001).
http://dx.doi.org/10.1063/1.1371262
16.
16. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005);
http://dx.doi.org/10.1063/1.1850093
16.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 123, 034102 (2005).
http://dx.doi.org/10.1063/1.1954769
17.
17. S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller III, Annu. Rev. Phys. Chem. 64, 387 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
18.
18. A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011).
http://dx.doi.org/10.1063/1.3624766
19.
19. J. S. Kretchmer and T. F. Miller III, J. Chem. Phys. 138, 134109 (2013).
http://dx.doi.org/10.1063/1.4797462
20.
20. A. R. Menzeleev, F. Bell, and T. F. Miller III, “Kinetically constrained ring polymer molecular dynamics for non-adiabatic chemical reactions” (unpublished).
21.
21. P. Shushkov, J. Phys. Chem. 138, 224102 (2013).
http://dx.doi.org/10.1063/1.4807706
22.
22. J. O. Richardson and M. Thoss, J. Chem. Phys. 139, 031102 (2013).
http://dx.doi.org/10.1063/1.4816124
23.
23. N. Ananth, J. Chem. Phys. 139, 124102 (2013).
http://dx.doi.org/10.1063/1.4821590
24.
24. B. R. Landry and J. E. Subotnik, J. Chem. Phys. 135, 191101 (2011);
http://dx.doi.org/10.1063/1.3663870
24.B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012).
http://dx.doi.org/10.1063/1.4733675
25.
25. P. Huo and D. F. Coker, J. Chem. Phys. 135, 201101 (2011).
http://dx.doi.org/10.1063/1.3664763
26.
26. P. Huo and D. F. Coker, J. Chem. Phys. 137, 22A535 (2012).
http://dx.doi.org/10.1063/1.4748316
27.
27. C.-Y. Hsieh and R. Kapral, J. Chem. Phys. 138, 134110 (2013).
http://dx.doi.org/10.1063/1.4798221
28.
28. R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
http://dx.doi.org/10.1063/1.478811
29.
29. D. MacKernan, G. Ciccotti, and R. Kapral, J. Chem. Phys. 116, 2346 (2002).
http://dx.doi.org/10.1063/1.1433502
30.
30. S. Nielsen, G. Ciccotti, and R. Kapral, J. Chem. Phys. 115, 5805 (2001).
http://dx.doi.org/10.1063/1.1400129
31.
31. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008);
http://dx.doi.org/10.1063/1.2955564
31.P. V. Parandekar and J. C. Tully, J. Chem. Theory Comput. 2, 229 (2006).
http://dx.doi.org/10.1021/ct050213k
32.
32. W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).
http://dx.doi.org/10.1063/1.445581
33.
33. S. A. Egorov, E. Rabani, and B. J. Berne, J. Chem. Phys. 110, 5238 (1999).
http://dx.doi.org/10.1063/1.478420
34.
34. H. Kim and R. Kapral, J. Chem. Phys. 123, 194108 (2005).
http://dx.doi.org/10.1063/1.2110140
35.
35. P. Shushkov, R. Li, and J. C. Tully, J. Chem. Phys. 137, 22A549 (2012).
http://dx.doi.org/10.1063/1.4766449
36.
36. S. Yang and J. Cao, J. Chem. Phys. 122, 094108 (2005).
http://dx.doi.org/10.1063/1.1856461
37.
37. H. D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979);
http://dx.doi.org/10.1063/1.437910
37.G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.578
38.
38. S. Bonella, D. Montemayor, and D. F. Coker, Proc. Natl. Acad. Sci. U.S.A. 102, 6715 (2005).
http://dx.doi.org/10.1073/pnas.0408326102
39.
39. Q. Shi and E. Geva, J. Phys. Chem. A. 107, 9059 (2003).
http://dx.doi.org/10.1021/jp030497+
40.
40.In the limit of ωc → ∞ (here we found ωc = Ω is sufficient18), Eq. (6) can be re-expressed as a spin-boson model41 with a brownian spectral density: jbr(ω) = λ0Ω2ηω/[(ω2 − Ω2)2 + η2ω2], and . As a consistency check we verified that identical results are obtained with either model.
41.
41. A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985).
http://dx.doi.org/10.1063/1.449017
42.
42.Here we choose the friction parameter in the range where the rate is invariant to changes of η (plateau region) according to Ref. 43.
43.
43. M. Topaler and N. Makri, J. Phys. Chem. 100, 4430 (1996).
http://dx.doi.org/10.1021/jp951673k
44.
44. N. Ananth and T. F. Miller III, J. Chem. Phys. 133, 234103 (2010).
http://dx.doi.org/10.1063/1.3511700
45.
45.See supplementary material at http://dx.doi.org/10.1063/1.4826163 for calculation details, approximate correlation functions, initial distribution sampling, and analytic limits including Zusman's model. [Supplementary Material]
46.
46. G. A. Voth, D. Chandler, and W. H. Miller, J. Phys. Chem. 93, 7009 (1989).
http://dx.doi.org/10.1021/j100356a025
47.
47. U. Müller and G. Stock, J. Chem. Phys. 111, 77 (1999).
http://dx.doi.org/10.1063/1.479255
48.
48. G. Stock and U. Müller, J. Chem. Phys. 111, 65 (1999).
http://dx.doi.org/10.1063/1.479254
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4826163
Loading
/content/aip/journal/jcp/139/15/10.1063/1.4826163
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/15/10.1063/1.4826163
2013-10-17
2014-12-18

Abstract

A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/15/1.4826163.html;jsessionid=4q14gtik6fmin.x-aip-live-02?itemId=/content/aip/journal/jcp/139/15/10.1063/1.4826163&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4826163
10.1063/1.4826163
SEARCH_EXPAND_ITEM