Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Murad and I. K. Puri, Appl. Phys. Lett. 102(19), 19310911931094 (2013).
2. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84(3), 1045 (2012).
3. M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88(9), 094302 (2002).
4. L. Wang and B. Li, Phys. Rev. Lett. 99(17), 177208 (2007).
5. L. Wang and B. Li, Phys. Rev. Lett. 101(26), 267203 (2008).
6. S. Murad and I. K. Puri, J. Chem. Phys. 137(8), 08110110811014 (2012).
7. S. Murad and I. K. Puri, Appl. Phys. Lett. 100(12), 12190111219015 (2012).
8. S. Murad and I. K. Puri, Appl. Phys. Lett. 92(13), 133105 (2008).
9. S. Murad and I. K. Puri, Chem. Phys. Lett. 467(1–3), 110113 (2008).
10. S. Murad and I. K. Puri, Chem. Phys. Lett. 476(4–6), 267270 (2009).
11. G. Balasubramanian, I. K. Puri, M. C. Bohm, and F. Leroy, Nanoscale 3(9), 37143720 (2011).
12. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314(5802), 11211124 (2006).
13. J. Hu, X. Ruan and Y. P. Chen, Nano Lett. 9(7), 27302735 (2009).
14. M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, Appl. Phys. Lett. 95(15), 151903 (2009).
15. Z. G. Shao, L. Yang, H. K. Chan, and B. Hu, Phys. Rev. E 79(6), 061119 (2009).
16. D. J. Evans and B. L. Holian, J. Chem. Phys. 83, 4069 (1985).
17. H. A. Posch and W. G. Hoover, in Molecular Liquids: New Perspectives in Physics and Chemistry, edited by J. J. C. Teixeira-Dias (Kluwer Academic Publishers, Dordrecht, 1992), pp. 527547.
18. F. Römer, A. Lervik, and F. Bresme, J. Chem. Phys. 137, 074503 (2012).
19. J. Malm, E. Sahramo, M. Karppinen, and R. H. A. Ras, Chem. Mater. 22, 3349 (2010).
20. C. Z. Fan, Y. Gao, and J. P. Huanga, Appl. Phys. Lett. 92, 251907 (2008).
21. A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz, Phys. Rev. E 84, 061108 (2011).

Data & Media loading...


Article metrics loading...



We propose a conceptual design for a logic device that is the thermal analog of a transistor. It has fixed hot (emitter) and cold (collector) temperatures, and a gate controls the heat current. Thermal logic could be applied for thermal digital computing, enhance energy conservation, facilitate thermal rheostats, and enable the transport of phononic data. We demonstrate such a device using molecular dynamics simulations that consider thermal transport across hot and cold solid Si regions that seal water within them. Changes in the hot side, or emitter, heat current are linear with respect to varying gate temperature but the corresponding variation in the collector current is nonlinear. This nonlinear variation in collector current defines the ON and OFF states of the device. In its OFF state, the thermal conductivity of the device is positive. In the ON state, however, more heat is extracted through the cold terminal than is provided at the hot terminal due to the intervention of the base terminal. This makes it possible to alter the transport factor by varying the gate conditions. When the device is ON, the transport factor is greater than unity, i.e., more heat is rejected at the collector than is supplied to the emitter.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd