1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: A tractable design for a thermal transistor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/15/10.1063/1.4826316
1.
1. S. Murad and I. K. Puri, Appl. Phys. Lett. 102(19), 19310911931094 (2013).
http://dx.doi.org/10.1063/1.4807173
2.
2. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84(3), 1045 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
3.
3. M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88(9), 094302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.094302
4.
4. L. Wang and B. Li, Phys. Rev. Lett. 99(17), 177208 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.177208
5.
5. L. Wang and B. Li, Phys. Rev. Lett. 101(26), 267203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.267203
6.
6. S. Murad and I. K. Puri, J. Chem. Phys. 137(8), 08110110811014 (2012).
http://dx.doi.org/10.1063/1.4749288
7.
7. S. Murad and I. K. Puri, Appl. Phys. Lett. 100(12), 12190111219015 (2012).
http://dx.doi.org/10.1063/1.3696022
8.
8. S. Murad and I. K. Puri, Appl. Phys. Lett. 92(13), 133105 (2008).
http://dx.doi.org/10.1063/1.2905281
9.
9. S. Murad and I. K. Puri, Chem. Phys. Lett. 467(1–3), 110113 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.10.068
10.
10. S. Murad and I. K. Puri, Chem. Phys. Lett. 476(4–6), 267270 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.056
11.
11. G. Balasubramanian, I. K. Puri, M. C. Bohm, and F. Leroy, Nanoscale 3(9), 37143720 (2011).
http://dx.doi.org/10.1039/c1nr10421g
12.
12. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314(5802), 11211124 (2006).
http://dx.doi.org/10.1126/science.1132898
13.
13. J. Hu, X. Ruan and Y. P. Chen, Nano Lett. 9(7), 27302735 (2009).
http://dx.doi.org/10.1021/nl901231s
14.
14. M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, Appl. Phys. Lett. 95(15), 151903 (2009).
http://dx.doi.org/10.1063/1.3247882
15.
15. Z. G. Shao, L. Yang, H. K. Chan, and B. Hu, Phys. Rev. E 79(6), 061119 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061119
16.
16. D. J. Evans and B. L. Holian, J. Chem. Phys. 83, 4069 (1985).
http://dx.doi.org/10.1063/1.449071
17.
17. H. A. Posch and W. G. Hoover, in Molecular Liquids: New Perspectives in Physics and Chemistry, edited by J. J. C. Teixeira-Dias (Kluwer Academic Publishers, Dordrecht, 1992), pp. 527547.
18.
18. F. Römer, A. Lervik, and F. Bresme, J. Chem. Phys. 137, 074503 (2012).
http://dx.doi.org/10.1063/1.4739855
19.
19. J. Malm, E. Sahramo, M. Karppinen, and R. H. A. Ras, Chem. Mater. 22, 3349 (2010).
http://dx.doi.org/10.1021/cm903831c
20.
20. C. Z. Fan, Y. Gao, and J. P. Huanga, Appl. Phys. Lett. 92, 251907 (2008).
http://dx.doi.org/10.1063/1.2951600
21.
21. A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz, Phys. Rev. E 84, 061108 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.061108
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4826316
Loading
/content/aip/journal/jcp/139/15/10.1063/1.4826316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/15/10.1063/1.4826316
2013-10-16
2014-12-27

Abstract

We propose a conceptual design for a logic device that is the thermal analog of a transistor. It has fixed hot (emitter) and cold (collector) temperatures, and a gate controls the heat current. Thermal logic could be applied for thermal digital computing, enhance energy conservation, facilitate thermal rheostats, and enable the transport of phononic data. We demonstrate such a device using molecular dynamics simulations that consider thermal transport across hot and cold solid Si regions that seal water within them. Changes in the hot side, or emitter, heat current are linear with respect to varying gate temperature but the corresponding variation in the collector current is nonlinear. This nonlinear variation in collector current defines the ON and OFF states of the device. In its OFF state, the thermal conductivity of the device is positive. In the ON state, however, more heat is extracted through the cold terminal than is provided at the hot terminal due to the intervention of the base terminal. This makes it possible to alter the transport factor by varying the gate conditions. When the device is ON, the transport factor is greater than unity, i.e., more heat is rejected at the collector than is supplied to the emitter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/15/1.4826316.html;jsessionid=23n3u47lo2gh0.x-aip-live-02?itemId=/content/aip/journal/jcp/139/15/10.1063/1.4826316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: A tractable design for a thermal transistor
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4826316
10.1063/1.4826316
SEARCH_EXPAND_ITEM