Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/15/10.1063/1.4826317
1.
1. I. R. Sims and I. W. M. Smith, Annu. Rev. Phys. Chem. 46, 109 (1995).
http://dx.doi.org/10.1146/annurev.pc.46.100195.000545
2.
2. I. W. M. Smith, Chem. Soc. Rev. 37, 812 (2008).
http://dx.doi.org/10.1039/b704257b
3.
3. V. A. Benderskii, V. I. Goldanskii, and D. E. Markarov, Phys. Rep. 233, 195 (1993).
http://dx.doi.org/10.1016/0370-1573(93)90136-2
4.
4. R. J. Shannon, M. A. Blitz, A. Goddard, and D. E. Heard, Nat. Chem. 5, 745 (2013).
http://dx.doi.org/10.1038/nchem.1692
5.
5. M. Bahou, C. W. Huang, Y. L. Huang, J. Glatthaar, and Y. P. Lee, J. Chin. Chem. Soc. 57, 771 (2010).
6.
6. T. Momose, M. Fushitani, and H. Hoshina, Int. Rev. Phys. Chem. 24, 533 (2005).
http://dx.doi.org/10.1080/01442350500444107
7.
7. T. Momose and T. Shida, Bull. Chem. Soc. Jpn. 71, 1 (1998).
http://dx.doi.org/10.1246/bcsj.71.1
8.
8. K. Yoshioka, P. L. Raston, and D. T. Anderson, Int. Rev. Phys. Chem. 25, 469 (2006).
http://dx.doi.org/10.1080/01442350600802766
9.
9. T. Kumada, Phys. Rev. B 68, 052301 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.052301
10.
10. T. Kumada, M. Sakakibara, T. Nagasaka, H. Fukuta, and J. Kumagai, J. Chem. Phys. 116, 1109 (2002).
http://dx.doi.org/10.1063/1.1426410
11.
11. T. Miyazaki, K.-P. Lee, K. Fueki, and A. Takeuchi, J. Phys. Chem. 88, 4959 (1984).
http://dx.doi.org/10.1021/j150665a033
12.
12. S. A. Boggs and H. L. Welsh, Can. J. Phys. 51, 1910 (1973).
http://dx.doi.org/10.1139/p73-253
13.
13. B. J. Roffey, S. A. Boggs, and H. L. Welsh, Can. J. Phys. 52, 2451 (1974).
14.
14. K. Yoshioka and D. T. Anderson, J. Mol. Struct. 786, 123 (2006).
http://dx.doi.org/10.1016/j.molstruc.2005.10.031
15.
15. J. F. Castillo, F. J. Aoiz, L. Banares, and M. A. Collins, J. Phys. Chem. A 108, 6611 (2004).
http://dx.doi.org/10.1021/jp048366b
16.
16. S. P. Walch, J. Chem. Phys. 98, 1170 (1993).
http://dx.doi.org/10.1063/1.464340
17.
17. K. S. Bradley and G. C. Schatz, J. Phys. Chem. 100, 12154 (1996).
http://dx.doi.org/10.1021/jp960530a
18.
18. S. L. Laursen, A. E. Delia, and K. Mitchell, J. Phys. Chem. A 104, 3681 (2000).
http://dx.doi.org/10.1021/jp993854i
19.
19. K. M.-R. Isokoski, Ph.D. thesis, University of Helsinki, Helsinki, 2008, p. 69.
20.
20. K. A. Peterson and J. S. Francisco, J. Chem. Phys. 134, 084308 (2011).
http://dx.doi.org/10.1063/1.3556990
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4826317 for experimental details. [Supplementary Material]
22.
22. J. A. Schmidt, M. S. Johnson, U. Lorenz, G. C. McBane, and R. Schinke, J. Chem. Phys. 135, 024311 (2011).
http://dx.doi.org/10.1063/1.3602324
23.
23. J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics (Prentice-Hall, Inc., Upper Saddle River, 1999).
24.
24. S. J. Klippenstein and J. A. Miller, J. Phys. Chem. A 106, 9267 (2002).
http://dx.doi.org/10.1021/jp021175t
25.
25. M. J. Pilling and S. H. Robertson, Annu. Rev. Phys. Chem. 54, 245 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103822
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/15/10.1063/1.4826317
Loading
/content/aip/journal/jcp/139/15/10.1063/1.4826317
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/15/10.1063/1.4826317
2013-10-18
2016-12-10

Abstract

We present low temperature kinetic measurements for the H + NO association reaction in solid parahydrogen (pH) at liquid helium temperatures (1–5 K). We synthesize 15N 18O doped pH solids via rapid vapor deposition onto an optical substrate attached to the cold tip of a liquid helium bath cryostat. We then subject the solids to short duration 193 nm irradiations to generate H-atoms produced as byproducts of the NO photodissociation, and monitor the subsequent reaction kinetics using rapid scan FTIR. For reactions initiated in solid pH at 4.3 K we observe little to no reaction; however, if we then slowly reduce the temperature of the solid we observe an abrupt onset to the H + NO → -HNNO reaction at temperatures below 2.4 K. This abrupt change in the reaction kinetics is fully reversible as the temperature of the solid pH is repeatedly cycled. We speculate that the observed non-Arrhenius behavior (negative activation energy) is related to the stability of the pre-reactive complex between the H-atom and 15N 18O reagents.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/15/1.4826317.html;jsessionid=EGFVLnx7f56csRUeBv6bF7p4.x-aip-live-03?itemId=/content/aip/journal/jcp/139/15/10.1063/1.4826317&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/15/10.1063/1.4826317&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/15/10.1063/1.4826317'
Right1,Right2,Right3,