1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/16/10.1063/1.4825247
1.
1. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1989).
2.
2. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 2002).
3.
3. P. H. Hünenberger, Adv. Polymer. Sci. 173, 105 (2005).
http://dx.doi.org/10.1007/b99427
4.
4. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
5.
5. G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys. 101, 4177 (1994).
http://dx.doi.org/10.1063/1.467468
6.
6. B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2004), Chap. 10.1, pp. 258268.
7.
7. A. A. Borovkov, Ergodicity and Stability of Stochastic Processes (John Wiley & Sons Ltd., Chichester, 1998).
8.
8. S. P. Brooks, J. R. Stat. Soc. Ser. D 47, 69 (1998).
http://dx.doi.org/10.1111/1467-9884.00117
9.
9. E. A. Koopman and C. P. Lowe, J. Chem. Phys. 124, 204103 (2006).
http://dx.doi.org/10.1063/1.2198824
10.
10. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
http://dx.doi.org/10.1063/1.2408420
11.
11. H. Risken, The Fokker-Planck Equation: Method of Solution and Applications (Springer-Verlag, New York, 1989).
12.
12. N. Bou-Rabee and H. Owhadi, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 48, 278 (2010).
http://dx.doi.org/10.1137/090758842
13.
13. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B 95, 216 (1987).
http://dx.doi.org/10.1016/0370-2693(87)91197-X
14.
14. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996).
http://dx.doi.org/10.1080/00268979600100761
15.
15. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).
http://dx.doi.org/10.1063/1.463940
16.
16. D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Mackenzie, J. A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J. Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin, R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana, Y. Shan, and B. Towles, in Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009).
17.
17. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten, J. Comput. Chem. 28, 2618 (2007).
http://dx.doi.org/10.1002/jcc.20829
18.
18. J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys. 227, 5342 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.01.047
19.
19. J. A. van Meel, A. Arnold, D. Frenkel, S. Portegies Zwart, and R. G. Belleman, Mol. Simul. 34, 259 (2008).
http://dx.doi.org/10.1080/08927020701744295
20.
20. W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, Comput. Phys. Commun. 179, 634 (2008).
http://dx.doi.org/10.1016/j.cpc.2008.05.008
21.
21. P. H. Colberg and F. Höfling, Comput. Phys. Commun. 182, 1120 (2011).
http://dx.doi.org/10.1016/j.cpc.2011.01.009
22.
22. K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (IEEE, New York, 2006).
23.
23. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
24.
24. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
25.
25. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
26.
26. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
http://dx.doi.org/10.1063/1.439486
27.
27. J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell Jr., and R. W. Pastor, J. Phys. Chem. B 114, 7830 (2010).
http://dx.doi.org/10.1021/jp101759q
28.
28. B. R. Brooks, C. L. Brooks III, A. D. MacKerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30, 1545 (2009).
http://dx.doi.org/10.1002/jcc.21287
29.
29. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
30.
30. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90014-1
31.
31. M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992).
http://dx.doi.org/10.1063/1.463137
32.
32. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
33.
33. C. Predescu, R. A. Lippert, M. P. Eastwood, D. Ierardi, H. Xu, M. Ø. Jensen, K. J. Bowers, J. Gullingsrud, C. A. Rendleman, R. O. Dror, and D. E. Shaw, Mol. Phys. 110, 967 (2012).
http://dx.doi.org/10.1080/00268976.2012.681311
34.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/16/10.1063/1.4825247
Loading
/content/aip/journal/jcp/139/16/10.1063/1.4825247
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/16/10.1063/1.4825247
2013-10-23
2014-08-30

Abstract

In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/16/1.4825247.html;jsessionid=52fcbgpko8r09.x-aip-live-06?itemId=/content/aip/journal/jcp/139/16/10.1063/1.4825247&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/16/10.1063/1.4825247
10.1063/1.4825247
SEARCH_EXPAND_ITEM