Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1989).
2. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 2002).
3. P. H. Hünenberger, Adv. Polymer. Sci. 173, 105 (2005).
4. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
5. G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys. 101, 4177 (1994).
6. B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2004), Chap. 10.1, pp. 258268.
7. A. A. Borovkov, Ergodicity and Stability of Stochastic Processes (John Wiley & Sons Ltd., Chichester, 1998).
8. S. P. Brooks, J. R. Stat. Soc. Ser. D 47, 69 (1998).
9. E. A. Koopman and C. P. Lowe, J. Chem. Phys. 124, 204103 (2006).
10. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
11. H. Risken, The Fokker-Planck Equation: Method of Solution and Applications (Springer-Verlag, New York, 1989).
12. N. Bou-Rabee and H. Owhadi, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 48, 278 (2010).
13. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B 95, 216 (1987).
14. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996).
15. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).
16. D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Mackenzie, J. A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J. Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin, R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana, Y. Shan, and B. Towles, in Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009).
17. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten, J. Comput. Chem. 28, 2618 (2007).
18. J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys. 227, 5342 (2008).
19. J. A. van Meel, A. Arnold, D. Frenkel, S. Portegies Zwart, and R. G. Belleman, Mol. Simul. 34, 259 (2008).
20. W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, Comput. Phys. Commun. 179, 634 (2008).
21. P. H. Colberg and F. Höfling, Comput. Phys. Commun. 182, 1120 (2011).
22. K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (IEEE, New York, 2006).
23. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
24. S. Nosé, J. Chem. Phys. 81, 511 (1984).
25. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
26. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
27. J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell Jr., and R. W. Pastor, J. Phys. Chem. B 114, 7830 (2010).
28. B. R. Brooks, C. L. Brooks III, A. D. MacKerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30, 1545 (2009).
29. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
30. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
31. M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992).
32. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
33. C. Predescu, R. A. Lippert, M. P. Eastwood, D. Ierardi, H. Xu, M. Ø. Jensen, K. J. Bowers, J. Gullingsrud, C. A. Rendleman, R. O. Dror, and D. E. Shaw, Mol. Phys. 110, 967 (2012).

Data & Media loading...


Article metrics loading...



In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd