Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/16/10.1063/1.4827101
1.
1. R. Nuzzo and D. Allara, J. Am. Chem. Soc. 105, 4481 (1983).
http://dx.doi.org/10.1021/ja00351a063
2.
2. M. Yu, N. Bovet, C. J. Satterley, S. Bengio, K. R. J. Lovelock, P. K. Milligan, R. G. Jones, D. P. Woodruff, and V. Dhanak, Phys. Rev. Lett. 97, 166102 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.166102
3.
3. P. Maksymovych, D. C. Sorescu, and J. T. Yates, Jr., Phys. Rev. Lett. 97, 146103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.146103
4.
4. H. Grönbeck and H. Häkkinen, J. Phys. Chem. B 111, 3325 (2007).
http://dx.doi.org/10.1021/jp0700128
5.
5. N. A. Kautz and S. A. Kandel, J. Am. Chem. Soc. 130, 6908 (2008).
http://dx.doi.org/10.1021/ja8011325
6.
6. E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli, G. Benitez, A. A. Rubert, and R. C. Salvarezza, Acc. Chem. Res. 45, 1183 (2012).
http://dx.doi.org/10.1021/ar200260p
7.
7. A. Ulman, Chem. Rev. 96, 1533 (1996).
http://dx.doi.org/10.1021/cr9502357
8.
8. G. E. Poirier and E. D. Pylant, Science 272, 1145 (1996).
http://dx.doi.org/10.1126/science.272.5265.1145
9.
9. F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).
http://dx.doi.org/10.1016/S0079-6816(00)00024-1
10.
10. S. A. Claridge, W.-S. Liao, J. C. Thomas, Y. Zhao, H. H. Cao, S. Cheunkar, A. C. Serino, A. M. Andrews, and P. S. Weiss, Chem. Soc. Rev. 42, 2725 (2013).
http://dx.doi.org/10.1039/c2cs35365b
11.
11. N. A. Kautz and S. A. Kandel, J. Phys. Chem. C 116, 4725 (2012).
http://dx.doi.org/10.1021/jp211209m
12.
12. D. J. Garton, T. K. Minton, M. Alagia, N. Balucani, P. Casavecchia, and G. G. Volpi, J. Chem. Phys. 112, 5975 (2000).
http://dx.doi.org/10.1063/1.481170
13.
13. J. Torres, C. C. Perry, A. J. Wagner, and D. H. Fairbrother, Surf. Sci. 543, 75 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00992-0
14.
14. C. Waring, P. A. J. Bagot, M. W. P. Bebbington, M. T. Räisänen, M. Buck, M. L. Costen, and K. G. McKendrick, J. Phys. Chem. Lett. 1, 1917 (2010).
http://dx.doi.org/10.1021/jz100587g
15.
15. D. Y. Lee, M. M. Jobbins, A. R. Gans, and S. A. Kandel, Phys. Chem. Chem. Phys. 15, 18844 (2013).
http://dx.doi.org/10.1039/c3cp52023d
16.
16. B. Day, S. Shuler, A. Ducre, and J. Morris, J. Chem. Phys. 119, 8084 (2003).
http://dx.doi.org/10.1063/1.1609971
17.
17. S. Chen, L. Li, C. Boozer, and S. Jiang, Langmuir 16, 9287 (2000).
http://dx.doi.org/10.1021/la000417i
18.
18. L. A. Bumm, J. J. Arnold, L. F. Charles, T. D. Dunbar, D. L. Allara, and P. S. Weiss, J. Am. Chem. Soc. 121, 8017 (1999).
http://dx.doi.org/10.1021/ja982157l
19.
19. R. K. Smith, S. M. Reed, P. A. Lewis, J. D. Monnell, R. S. Clegg, K. F. Kelly, L. A. Bumm, J. E. Hutchison, and P. S. Weiss, J. Phys. Chem. B 105, 1119 (2001).
http://dx.doi.org/10.1021/jp0035129
20.
20. A. A. Dameron, T. J. Mullen, R. W. Hengstebeck, H. M. Saavedra, and P. S. Weiss, J. Phys. Chem. C 111, 6747 (2007).
http://dx.doi.org/10.1021/jp065368i
21.
21. D. Y. Lee, M. M. Jobbins, and S. A. Kandel, Rev. Sci. Instrum. 83, 044101 (2012).
http://dx.doi.org/10.1063/1.3701370
22.
22. A. P. J. Jansen, in An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions, Lecture Notes in Physics Vol. 856 (Springer-Verlag, Berlin, 2012).
23.
23. B. S. Day and J. R. Morris, J. Phys. Chem. B 107, 7120 (2003).
http://dx.doi.org/10.1021/jp034349v
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/16/10.1063/1.4827101
Loading
/content/aip/journal/jcp/139/16/10.1063/1.4827101
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/16/10.1063/1.4827101
2013-10-25
2016-09-26

Abstract

The chemical reaction of atomic chlorine with mixed monolayers of alkanethiolates having different chain lengths was investigated. scanning tunneling microscopy was used to acquire time-lapsed series of images, allowing the measurement of the effect of monolayer structure and composition on reactivity. The rate of chemical reaction is strongly site-dependent. In particular, the boundary between two different-length alkanethiolates greatly promotes the reactivity of nearby molecules, much more so than any other native defect typical of single-component alkanethiolate monolayers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/16/1.4827101.html;jsessionid=161UgqJdJ60JMGVCqJq1yYsS.x-aip-live-03?itemId=/content/aip/journal/jcp/139/16/10.1063/1.4827101&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/16/10.1063/1.4827101&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/16/10.1063/1.4827101'
Right1,Right2,Right3,