1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Immobilization of [60]fullerene on silicon surfaces through a calix[8]arene layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/16/10.1063/1.4827114
1.
1. S. Ciampi, J. B. Harper, and J. J. Gooding, Chem. Soc. Rev. 39, 2158 (2010).
http://dx.doi.org/10.1039/b923890p
2.
2. J. M. Buriak, Chem. Rev. 102, 1271 (2002).
http://dx.doi.org/10.1021/cr000064s
3.
3. F. Busolo, L. Franco, L. Armelao, and M. Maggini, Langmuir 26, 1889 (2010).
http://dx.doi.org/10.1021/la902643b
4.
4. D. Dattilo, L. Armelao, G. Fois, G. Mistura, and M. Maggini, Langmuir 23, 12945 (2007).
http://dx.doi.org/10.1021/la7024878
5.
5. L.-J. Wan, Acc. Chem. Res. 39, 334 (2006).
http://dx.doi.org/10.1021/ar0501929
6.
6. G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, and A. Vilan, Acc. Chem. Res. 35, 121 (2002).
http://dx.doi.org/10.1021/ar990047t
7.
7. A. Vilan, O. Yaffe, A. Biller, A. Salomon, A. Kahn, and D. Cahen, Adv. Mater. 22, 140 (2010).
http://dx.doi.org/10.1002/adma.200901834
8.
8. J. E. Anthony, Chem. Rev. 106(12), 5028 (2006).
http://dx.doi.org/10.1021/cr050966z
9.
9. G. G. Condorelli, A. Motta, M. Favazza, I. L. Fragalà, M. Busi, E. Menozzi, E. Dalcanale, and L. Cristofolini, Langmuir 22, 11126 (2006).
http://dx.doi.org/10.1021/la060682p
10.
10. L. Baldini, A. Casnati, F. Sansone, and R. Ungaro, Chem. Soc. Rev. 36, 254 (2007).
http://dx.doi.org/10.1039/b603082n
11.
11. G. G. Condorelli, A. Motta, M. Favazza, E. Gurrieri, P. Betti, and E. Dalcanale, Chem. Commun. 46, 288 (2010).
http://dx.doi.org/10.1039/b915572d
12.
12. A. Boccia, V. Lanzilotto, R. Zanoni, L. Pescatori, A. Arduini, and A. Secchi, Phys. Chem. Chem. Phys. 13, 4444 (2011).
http://dx.doi.org/10.1039/c0cp01916j
13.
13. H. J. Kim, M. H. Lee, L. Mutihac, J. Vicens, and J. S. Kim, Chem. Soc. Rev. 41, 1173 (2012).
http://dx.doi.org/10.1039/c1cs15169j
14.
14. Y. Ahn, Y. Jang, N. Selvapalam, G. Yun, and K. Kim, Angew. Chem., Int. Ed. 52, 3140 (2013).
http://dx.doi.org/10.1002/anie.201209382
15.
15. J. Zhou, M. Chen, and G. Diao, ACS Appl. Mater. Interfaces 5, 828 (2013).
http://dx.doi.org/10.1021/am302289v
16.
16. D. Wang, D. Xie, W. Shi, S. Sun, and C. Zhao, Langmuir 29, 8311 (2013).
http://dx.doi.org/10.1021/la401201w
17.
17. F. Langa De La Puente and J.-F. Nierengarten, Fullerenes: Principles and Applications (RSC Publishing, 2011).
18.
18. N. Martin and J.-F. Nierengarten, Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (Wiley-VCH, Weinheim, Germany, 2012).
19.
19. D. Dattilo, L. Armelao, M. Maggini, G. Fois, and G. Mistura, Langmuir 22, 8764 (2006).
http://dx.doi.org/10.1021/la060833o
20.
20. W. Feng and B. Miller, Langmuir 15, 3152 (1999).
http://dx.doi.org/10.1021/la980999s
21.
21. D. Bonifazi, A. Salomon, O. Enger, F. Diederich, and D. Cahen, Adv. Mater. 14, 802 (2002).
http://dx.doi.org/10.1002/1521-4095(20020605)14:11<802::AID-ADMA802>3.0.CO;2-%23
22.
22. F. Cattaruzza, A. Llanes-Pallas, A. G. Marrani, E. A. Dalchiele, F. Decker, R. Zanoni, M. Prato, and D. Bonifazi, J. Mater. Chem. 18, 1570 (2008).
http://dx.doi.org/10.1039/b717438a
23.
23. B. Fabre, D. M. Bassani, C.-K. Liang, D. Ray, F. Hui, and P. Hapiot, J. Phys. Chem. C 115, 14786 (2011).
http://dx.doi.org/10.1021/jp202081u
24.
24. S. S. Babu, H. Mohwald, and T. Nakanishi, Chem. Soc. Rev. 39, 4021 (2010).
http://dx.doi.org/10.1039/c000680g
25.
25. S. Zhang and L. Echegoyen, C. R. Chim. 9, 1031 (2006).
http://dx.doi.org/10.1016/j.crci.2005.11.011
26.
26. S. Bhattacharya, S. K. Nayak, S. Chattopadhyay, M. Banerjee, and A. K. Mukherjee, Spectrochim. Acta, Part A 61, 321 (2005).
http://dx.doi.org/10.1016/j.saa.2004.03.025
27.
27. P. L. Boulas, M. Gómez-Kaifer, and L. Echegoyen, Angew. Chem., Int. Ed. 37, 216 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P
28.
28. S. Zhang, A. Palkar, A. Fragoso, P. Prados, J. de Mendoza, and L. Echegoyen, Chem. Mater. 17, 2063 (2005).
http://dx.doi.org/10.1021/cm048222+
29.
29. J. L. Atwood, G. A. Koutsantonis, and C. L. Raston, Nature (London) 368, 229 (1994).
http://dx.doi.org/10.1038/368229a0
30.
30. T. Suzuki, K. Nakashima, and S. Shinkai, Chem. Lett. 23, 699 (1994).
http://dx.doi.org/10.1246/cl.1994.699
31.
31. J. Vicens and J. Harrowfield, Calixarenes in the Nanoworld (Springer, Dordrecht, 2007).
32.
32. D. Bonifazi, O. Enger, and F. Diederich, Chem. Soc. Rev. 36, 390 (2007).
http://dx.doi.org/10.1039/b604308a
33.
33. G.-B. Pan, J.-M. Liu, H.-M. Zhang, L.-J. Wan, Q.-Y. Zheng, and C.-L. Bai, Angew. Chem., Int. Ed. 42, 2747 (2003).
http://dx.doi.org/10.1002/anie.200350432
34.
34. S. Zhang and L. Echegoyen, J. Org. Chem. 70, 9874 (2005).
http://dx.doi.org/10.1021/jo051606e
35.
35. A. B. Sieval, A. L. Demirel, J. W. M. Nissink, M. R. Linford, J. H. van der Maas, W. H. de Jeu, H. Zuilhof, and E. J. R. Sudhölter, Langmuir 14, 1759 (1998).
http://dx.doi.org/10.1021/la971139z
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4827114 for synthesis of calix[8]arene 2 along with pertinent characterization data (see Figures S1–S4 for 1H- and 13C-NMR, mass and thermogravimetric analysis). [Supplementary Material]
37.
37. C. P. Wade and C. E. D. Chidsey, Appl. Phys. Lett. 71, 1679 (1997).
http://dx.doi.org/10.1063/1.120249
38.
38. A. Pozzato, S. D. Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, Y. Chen, and M. Natali, Microelectron. Eng. 83, 884 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.012
39.
39. D. Briggs and M. Seah, Practical Surface Analysis. Volume 1: Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1990).
40.
40. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.4709
41.
41. Hyperchem Professional, Hypercube, Inc., Gainesville, FL, 2007.
42.
42. C. D. Gutsche, B. Dhawan, K. H. No, and R. Muthukrishnan, J. Am. Chem. Soc. 103, 3782 (1981).
http://dx.doi.org/10.1021/ja00403a028
43.
43. E. Nomura, H. Taniguchi, K. Kawaguchi, and Y. Otsuji, J. Org. Chem. 58, 4709 (1993).
http://dx.doi.org/10.1021/jo00069a039
44.
44. P. G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, New York, 2003)
45.
45. J. Moulder, F. Stickle, P. Sobol, and K. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992).
46.
46. A. B. Sieval, R. Linke, G. Heij, G. Meijer, H. Zuilhof, and E. J. R. Sudhölter, Langmuir 17, 7554 (2001).
http://dx.doi.org/10.1021/la010484s
47.
47. T. Rudalevige, A. H. Francis, and R. Zand, J. Phys. Chem. A 102, 9797 (1998).
http://dx.doi.org/10.1021/jp9832591
48.
48. Q. Ying, J. Marecek, and B. Chu, Chem. Phys. Lett. 219, 214 (1994).
http://dx.doi.org/10.1016/0009-2614(94)87047-0
49.
49. G. G. Condorelli, A. Motta, I. L. Fragalà, F. Giannazzo, V. Raineri, A. Caneschi, and D. Gatteschi, Angew. Chem., Int. Ed. 43, 4081 (2004).
http://dx.doi.org/10.1002/anie.200453933
50.
50. F. Cattaruzza, A. Cricenti, A. Flamini, M. Girasole, G. Longo, A. Mezzi, and T. Prosperi, J. Mater. Chem. 14(9), 1461 (2004).
http://dx.doi.org/10.1039/b312273e
51.
51. W. Harneit, Phys. Rev. A 65, 032322 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.032322
52.
52. L. Franco, S. Ceola, C. Corvaja, S. Bolzonella, W. Harneit, and M. Maggini, Chem. Phys. Lett. 422, 100 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.02.046
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/16/10.1063/1.4827114
Loading
/content/aip/journal/jcp/139/16/10.1063/1.4827114
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/16/10.1063/1.4827114
2013-10-31
2014-11-22

Abstract

In this work, we report the functionalization of flat Si(100) surfaces with a calix[8]arene derivative through a thermal hydrosilylation process, followed by docking with [60]fullerene. Chemical grafting of calix[8]arene on silicon substrates was evaluated by X-ray photoelectron spectroscopy, whereas host-guest immobilization of fullerene was demonstrated by atomic force microscopy and sessile drop water contact angle measurements. Surface topographical variations, modelled on the basis of calix[8]arene and [60]fullerene geometrical parameters, are consistent with the observed morphological features relative to surface functionalization and to non-covalent immobilization of [60]fullerene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/16/1.4827114.html;jsessionid=1v2hvospxsz4u.x-aip-live-06?itemId=/content/aip/journal/jcp/139/16/10.1063/1.4827114&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Immobilization of [60]fullerene on silicon surfaces through a calix[8]arene layer
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/16/10.1063/1.4827114
10.1063/1.4827114
SEARCH_EXPAND_ITEM