Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/17/10.1063/1.4827017
1.
1. T. K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x
2.
2. B. D. Huey, D. Lisjak, and D. A. Bonnell, J. Am. Ceram. Soc. 82, 1941 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb02023.x
3.
3. S. Hirose, K. Nishita, and H. Niimi, J. Appl. Phys. 100, 083706 (2006).
http://dx.doi.org/10.1063/1.2358833
4.
4. J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, J. Appl. Phys. 84, 6859 (1998).
http://dx.doi.org/10.1063/1.368981
5.
5. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
http://dx.doi.org/10.1116/1.591472
6.
6. G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, and A. Vilan, Acc. Chem. Res. 35, 121 (2002).
http://dx.doi.org/10.1021/ar990047t
7.
7. N. Koch, ChemPhysChem 8, 1438 (2007).
http://dx.doi.org/10.1002/cphc.200700177
8.
8. H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, IEEE J. Sel. Top. Quantum Electron. 4, 24 (1998).
http://dx.doi.org/10.1109/2944.669459
9.
9. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).
http://dx.doi.org/10.1063/1.121940
10.
10. F. Nuesch, F. Rotzinger, L. Si-Ahmed, and L. Zuppiroli, Chem. Phys. Lett. 288, 861 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00350-9
11.
11. J. Blochwitz, T. Fritz, M. Pfeiffer, K. Leo, D. Alloway, P. Lee, and N. Armstrong, Org. Electron. 2, 97 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00016-7
12.
12. X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J.-L. Bredas, J. Am. Chem. Soc. 124, 8131 (2002).
http://dx.doi.org/10.1021/ja025673r
13.
13. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
14.
14. I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Phys. Rev. B 54, R14321 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R14321
15.
15. C. Boulas, J. Davidovits, F. Rondelez, and D. Vuillaume, Phys. Rev. Lett. 76, 4797 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4797
16.
16. I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 71, 3528 (1997).
http://dx.doi.org/10.1063/1.120381
17.
17. R. W. Zehner, B. F. Parsons, R. P. Hsung, and L. R. Sita, Langmuir 15, 1121 (1999).
http://dx.doi.org/10.1021/la981114f
18.
18. L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nuesch, M. N. Bussac, D. Ades, A. Siove, E. Moons, and M. Gratzel, Eur. Phys. J. B 11, 505 (1999).
http://dx.doi.org/10.1007/s100510050962
19.
19. C. Ganzorig, K.-J. Kwak, K. Yagi, and M. Fujihira, Appl. Phys. Lett. 79, 272 (2001).
http://dx.doi.org/10.1063/1.1384896
20.
20. R. Hatton, Thin Solid Films 394, 291 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01191-9
21.
21. P. Hartig, T. Dittrich, and J. Rappich, J. Electroanal. Chem. 524–525, 120 (2002).
http://dx.doi.org/10.1016/S0022-0728(02)00764-7
22.
22. H. Yan, Q. Huang, J. Cui, J. Veinot, M. Kern, and T. Marks, Adv. Mater. 15, 835 (2003).
http://dx.doi.org/10.1002/adma.200304585
23.
23. D. Alloway, M. Hofmann, D. Smith, N. Gruhn, A. Graham, R. Colorado, Jr., V. Wysocki, T. Lee, P. Lee, and N. Armstrong, J. Phys. Chem. B 107, 11690 (2003).
http://dx.doi.org/10.1021/jp034665+
24.
24. G. Heimel, L. Romaner, E. Zojer, and J.-L. Bredas, Nano Lett. 7, 932 (2007).
http://dx.doi.org/10.1021/nl0629106
25.
25. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621 (2005).
http://dx.doi.org/10.1002/adma.200401216
26.
26. L. Lindell, M. Unge, W. Osikowicz, S. Stafstrom, W. R. Salaneck, X. Crispin, and M. P. de Jong, Appl. Phys. Lett. 92, 163302 (2008).
http://dx.doi.org/10.1063/1.2912818
27.
27. J.-G. Wang, E. Prodan, R. Car, and A. Selloni, Phys. Rev. B 77, 245443 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245443
28.
28. G. Latini, M. Wykes, R. Schlapak, S. Howorka, and F. Cacialli, Appl. Phys. Lett. 92, 013511 (2008).
http://dx.doi.org/10.1063/1.2829387
29.
29. I. Csik, S. P. Russo, and P. Mulvaney, J. Phys. Chem. C 112, 20413 (2008).
http://dx.doi.org/10.1021/jp805074b
30.
30. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Bredas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
http://dx.doi.org/10.1126/science.1218829
31.
31. J. Gland and G. Somorjai, Surf. Sci. 38, 157 (1973).
http://dx.doi.org/10.1016/0039-6028(73)90281-1
32.
32. A. Otto, K. Frank, and B. Reihl, Surf. Sci. 163, 140 (1985).
http://dx.doi.org/10.1016/0039-6028(85)90854-4
33.
33. G. Eesley, Phys. Lett. A 81, 193 (1981).
http://dx.doi.org/10.1016/0375-9601(81)90060-8
34.
34. D. Heskett, L. Urbach, K. Song, E. Plummer, and H. Dai, Surf. Sci. 197, 225 (1988).
http://dx.doi.org/10.1016/0039-6028(88)90581-X
35.
35. F. P. Netzer, G. Rangelov, G. Rosina, and H. B. Saalfeld, J. Chem. Phys. 89, 3331 (1988).
http://dx.doi.org/10.1063/1.454941
36.
36. J. Whitten, Surf. Sci. 546, 107 (2003).
http://dx.doi.org/10.1016/j.susc.2003.09.017
37.
37. Z. Ma, F. Rissner, L. Wang, G. Heimel, Q. Li, Z. Shuai, and E. Zojer, Phys. Chem. Chem. Phys. 13, 9747 (2011).
http://dx.doi.org/10.1039/c0cp02168g
38.
38. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols, S. J. Higgins, V. M. M. Garcia-Suarez, and C. J. Lambert, J. Am. Chem. Soc. 131, 15647 (2009).
http://dx.doi.org/10.1021/ja9061129
39.
39. C. Woll, Prog. Surf. Sci. 82, 55 (2007).
http://dx.doi.org/10.1016/j.progsurf.2006.12.002
40.
40. J. Walsh, R. Davis, C. Muryn, G. Thornton, V. Dhanak, and K. Prince, Phys. Rev. B 48, 14749 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14749
41.
41. S. Hovel, C. Kolczewski, M. Wuhn, J. Albers, K. Weiss, V. Staemmler, and C. Woll, J. Chem. Phys. 112, 3909 (2000).
http://dx.doi.org/10.1063/1.480942
42.
42. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
43.
43. E. Fabiano, M. Piacenza, S. D’Agostino, and F. Della Sala, J. Chem. Phys. 131, 234101 (2009).
http://dx.doi.org/10.1063/1.3271393
44.
44. J. Martínez, E. Abad, C. González, J. Ortega, and F. Flores, Org. Electron. 13, 399 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.003
45.
45. J. P. Perdew, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
46.
46. P. Mori-Sanchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125, 201102 (2006).
http://dx.doi.org/10.1063/1.2403848
47.
47. J. Neaton, M. Hybertsen, and S. Louie, Phys. Rev. Lett. 97, 216405 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216405
48.
48. J. M. Garcia-Lastra, C. Rostgaard, A. Rubio, and K. S. Thygesen, Phys. Rev. B 80, 245427 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245427
49.
49. K. Thygesen and A. Rubio, Phys. Rev. Lett. 102, 046802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.046802
50.
50. A. Biller, I. Tamblyn, J. B. Neaton, and L. Kronik, J. Chem. Phys. 135, 164706 (2011).
http://dx.doi.org/10.1063/1.3655357
51.
51. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.06.022
52.
52. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
53.
53. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
54.
54. G.-X. Zhang, A. Tkatchenko, J. Paier, H. Appel, and M. Scheffler, Phys. Rev. Lett. 107, 245501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.245501
55.
55. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
56.
56. M. Scheffler, Physica B & C 146, 176 (1987).
http://dx.doi.org/10.1016/0378-4363(87)90060-X
57.
57. N. A. Richter, S. Sicolo, S. V. Levchenko, J. Sauer, and M. Scheffler, Phys. Rev. Lett. 111, 045502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.045502
58.
58. N. Moll, Y. Xu, O. T. Hofmann, and P. Rinke, New J. Phys. 15, 083009 (2013).
http://dx.doi.org/10.1088/1367-2630/15/8/083009
59.
59. Y. Xu, O. T. Hofmann, R. Schlesinger, S. Winkler, J. Frisch, J. Niederhausen, A. Vollmer, S. Blumstengel, F. Henneberger, N. Koch, P. Rinke, and M. Scheffler, preprint arXiv:1306.4580.
60.
60. Q. Zhong, C. Gahl, and M. Wolf, Surf. Sci. 496, 21 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01502-3
61.
61.The words HOMO and LUMO are commonly used to denote the electronic levels associated with the experimental ionization potential and electron affinity. In order to avoid confusion, we use the prefixes “PBE” or “DFT-” for levels obtained by density functional theory.
62.
62. F. P. Netzer and M. G. Ramsey, Crit. Rev. Solid State Mater. Sci. 17, 397 (1992).
http://dx.doi.org/10.1080/10408439208243753
63.
63. C. J. Nelin, P. S. Bagus, and M. R. Philpott, J. Chem. Phys. 87, 2170 (1987).
http://dx.doi.org/10.1063/1.453142
64.
64. A. Natan, L. Kronik, H. Haick, and R. Tung, Adv. Mater. 19, 4103 (2007).
http://dx.doi.org/10.1002/adma.200701681
65.
65. D. A. Egger, F. Rissner, G. M. Rangger, O. T. Hofmann, L. Wittwer, G. Heimel, and E. Zojer, Phys. Chem. Chem. Phys. 12, 4291 (2010).
http://dx.doi.org/10.1039/b924238b
66.
66. J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, and G. I. Csonka, J. Chem. Theory Comput. 5, 902 (2009).
http://dx.doi.org/10.1021/ct800531s
67.
67. A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria, J. Chem. Phys. 125, 194112 (2006).
http://dx.doi.org/10.1063/1.2387954
68.
68. I. Avilov, V. Geskin, and J. Cornil, Adv. Funct. Mater. 19, 624 (2009).
http://dx.doi.org/10.1002/adfm.200800632
69.
69. P. J. Feibelman, B. Hammer, J. K. Norrskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, J. Phys. Chem. B 105, 4018 (2001).
http://dx.doi.org/10.1021/jp002302t
70.
70. X. Ren, P. Rinke, and M. Scheffler, Phys. Rev. B 80, 045402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045402
71.
71. F. Caruso, P. Rinke, X. Ren, M. Scheffler, and A. Rubio, Phys. Rev. B 86, 081102(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.86.081102
72.
72. F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Scheffler, Phys. Rev. B 88, 075105 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075105
73.
73. D. Langreth and J. Perdew, Phys. Rev. B 21, 5469 (1980).
http://dx.doi.org/10.1103/PhysRevB.21.5469
74.
74. J. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
75.
75. Z. Yan, J. Perdew, and S. Kurth, Phys. Rev. B 61, 16430 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.16430
76.
76. M. Rohlfing and T. Bredow, Phys. Rev. Lett. 101, 266106 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.266106
77.
77. X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012).
http://dx.doi.org/10.1007/s10853-012-6570-4
78.
78. X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.153003
79.
79. A. Gruneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem. Phys. 131, 154115 (2009).
http://dx.doi.org/10.1063/1.3250347
80.
80. J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Gruneis, G. Kresse, and M. Scheffler, New J. Phys. 14, 043002 (2012).
http://dx.doi.org/10.1088/1367-2630/14/4/043002
81.
81. A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, Phys. Rev. B 81, 085212 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085212
82.
82. R. Ramprasad, H. Zhu, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 108, 066404 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.066404
83.
83. A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Status Solidi B 248, 775 (2011).
http://dx.doi.org/10.1002/pssb.201046195
84.
84. H.-P. Komsa, P. Broqvist, and A. Pasquarello, Phys. Rev. B 81, 205118 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205118
85.
85. P. Rinke, A. Janotti, M. Scheffler, and C. Van de Walle, Phys. Rev. Lett. 102, 026402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.026402
86.
86. H. Li, L. K. Schirra, J. Shim, H. Cheun, B. Kippelen, O. L. A. Monti, and J.-L. Bredas, Chem. Mater. 24, 3044 (2012).
http://dx.doi.org/10.1021/cm301596x
87.
87. D. Deutsch, A. Natan, Y. Shapira, and L. Kronik, J. Am. Chem. Soc. 129, 2989 (2007).
http://dx.doi.org/10.1021/ja068417d
88.
88. F. Rissner, A. Natan, D. A. Egger, O. T. Hofmann, L. Kronik, and E. Zojer, Org. Electron. 13, 3165 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.09.003
89.
89. N. Sai, K. Leung, and J. Chelikowsky, Phys. Rev. B 83, 121309 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.121309
90.
90. L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, J. Chem. Theory Comput. 8, 1515 (2012).
http://dx.doi.org/10.1021/ct2009363
91.
91. J. Jaramillo, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 1068 (2003).
http://dx.doi.org/10.1063/1.1528936
92.
92. K. Jacobi, G. Zwicker, and A. Gutmann, Surf. Sci. 141, 109 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90199-7
93.
93. S. Lias NIST Chemistry Webbook, NIST Standard Reference Database Number 69: “Pyridine—Gas Phase Ion Energetics Data,” edited by S. Lias (National Institute of Standards and Technology, 2013).
94.
94. I. Nenner, J. Chem. Phys. 62, 1747 (1975).
http://dx.doi.org/10.1063/1.430700
95.
95. R. Powell, W. Spicer, and J. McMenamin, Phys. Rev. B 6, 3056 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.3056
96.
96. F. Oba, A. Togo, and I. Tanaka, Phys. Rev. B 77, 245202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245202
97.
97. A. Janotti and C. G. Van de Walle, Phys. Status Solidi B 248, 799 (2011).
http://dx.doi.org/10.1002/pssb.201046384
98.
98. E. F. Valeev, V. Coropceanu, D. A. da Silva Filho, S. Salman, and J.-L. Bredas, J. Am. Chem. Soc. 128, 9882 (2006).
http://dx.doi.org/10.1021/ja061827h
99.
99. S. Sharifzadeh, A. Biller, L. Kronik, and J. Neaton, Phys. Rev. B 85, 125307 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125307
100.
100. S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L. Johnson, A. Vollmer, J. P. Rabe, and N. Koch, Nature Mater. 7, 326 (2008).
http://dx.doi.org/10.1038/nmat2119
101.
101. S. Y. Han, J. K. Song, J. H. Kim, H. B. Oh, and S. K. Kim, J. Chem. Phys. 111, 4041 (1999).
http://dx.doi.org/10.1063/1.480269
102.
102. J. Eland, J. Berkowitz, H. Schulte, and R. Frey, Int. J. Mass Spectrom. Ion Phys. 28, 297 (1978).
http://dx.doi.org/10.1016/0020-7381(78)80095-3
103.
103. K.-H. Frank, R. Dudde, and E. Koch, Chem. Phys. Lett. 132, 83 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80700-X
104.
104. J. Janak, Phys. Rev. B 18, 7165 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.7165
105.
105. N. Marom, F. Caruso, X. Ren, O. T. Hofmann, T. Korzdorfer, J. Chelikowsky, A. Rubio, M. Scheffler, and P. Rinke, Phys. Rev. B 86, 245127 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.245127
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827017
Loading
/content/aip/journal/jcp/139/17/10.1063/1.4827017
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/17/10.1063/1.4827017
2013-11-04
2016-10-01

Abstract

Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO , we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/17/1.4827017.html;jsessionid=YwpolgE47B2URM2Vx-Ts6Iif.x-aip-live-03?itemId=/content/aip/journal/jcp/139/17/10.1063/1.4827017&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/17/10.1063/1.4827017&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/17/10.1063/1.4827017'
Right1,Right2,Right3,