1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Droplet size distributions in turbulent emulsions: Breakup criteria and surfactant effects from direct numerical simulations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/17/10.1063/1.4827025
1.
1. E. G. Chatzi and C. Kiparissides, AIChE J. 41, 1640 (1995).
http://dx.doi.org/10.1002/aic.690410705
2.
2. J. Lovick, A. A. Mouza, S. V. Paras, G. J. Lye, and P. Angeli, J. Chem. Technol. Biotechnol. 80, 545 (2005).
http://dx.doi.org/10.1002/jctb.1205
3.
3. A. J. Karabelas, AIChE J. 24, 170 (1978).
http://dx.doi.org/10.1002/aic.690240203
4.
4. W. K. Brown and K. H. Wohletz, J. Appl. Phys. 78, 2758 (1995).
http://dx.doi.org/10.1063/1.360073
5.
5. G. B. Deane and M. D. Stokes, Nature (London) 418, 839 (2002).
http://dx.doi.org/10.1038/nature00967
6.
6. C. Garrett, M. Li, and D. Farmer, J. Phys. Oceanogr. 30, 2163 (2000).
http://dx.doi.org/10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;2
7.
7. J. O. Hinze, AIChE J. 1, 289 (1955).
http://dx.doi.org/10.1002/aic.690010303
8.
8. W. Hwang and J. K. Eaton, Int. J. Multiphase Flow 32, 1386 (2006).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.06.008
9.
9. R. A. Gore and C. T. Crowe, Int. J. Multiphase Flow 15, 279 (1989).
http://dx.doi.org/10.1016/0301-9322(89)90076-1
10.
10. C. T. Crowe, Int. J. Multiphase Flow 26, 719 (2000).
http://dx.doi.org/10.1016/S0301-9322(99)00050-6
11.
11. J. J. Derksen and H. E. A. Van Den Akker, Trans. IChemE A 85, 697 (2007).
http://dx.doi.org/10.1205/cherd06161
12.
12. A. ten Cate, E. van Vliet, J. J. Derksen, and H. E. A. Van Den Akker, Comput. Fluids 35, 1239 (2006).
http://dx.doi.org/10.1016/j.compfluid.2005.06.001
13.
13. K. Alvelius, Phys. Fluids 11, 1880 (1999).
http://dx.doi.org/10.1063/1.870050
14.
14. P. Perlekar, L. Biferale, M. Sbragaglia, S. Srivatava, and F. Toschi, Phys. Fluids 24, 065101 (2012).
http://dx.doi.org/10.1063/1.4719144
15.
15. M. Nekovee, P. V. Coveney, H. Chen, and B. M. Boghosian, Phys. Rev. E 62, 8282 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.8282
16.
16. K. Furtado and R. Skartlien, Phys. Rev. E 81, 066704 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.066704
17.
17. K. D. Danov, P. A. Kralchevsky, and I. B. Ivanov, in Encyclopedic Handbook of Emulsion Technology, edited by J. Sjöblom (Marcel Dekker, New York, 2001), pp. 621659.
18.
18. R. Skartlien, B. Grimes, P. Meakin, J. Sjöblom, and E. Sollum, J. Phys. Chem. 137, 214701 (2012).
http://dx.doi.org/10.1063/1.4768243
19.
19. K. Arai, M. Konno, Y. Matunaga, and S. Saito, J. Chem Eng. Jpn. 10, 325 (1977).
http://dx.doi.org/10.1252/jcej.10.325
20.
20. J. S. Lagisetty, P. K. Das, R. Kumar, and K. S. Ghandi, Chem. Eng. Sci. 41, 65 (1986).
http://dx.doi.org/10.1016/0009-2509(86)85198-3
21.
21. P. K. Das, Chem. Eng. Technol. 19, 39 (1996).
http://dx.doi.org/10.1002/ceat.270190107
22.
22. R. V. Calabrese, T. P. K. Chang, and P. T. Dang, AIChE J. 32, 657 (1986).
http://dx.doi.org/10.1002/aic.690320416
23.
23. R. Andersson and B. Andersson, AIChE J. 52, 2020 (2006).
http://dx.doi.org/10.1002/aic.10831
24.
24. H. P. Grace, Chem. Eng. Commun. 14, 225 (1982).
http://dx.doi.org/10.1080/00986448208911047
25.
25. R. A. de Bruijn, Ph.D. thesis, Eindhoven University Technology, the Netherlands, 1989.
26.
26. M. Li and C. Garrett, Mar. Pollution Bull. 36, 961 (1998).
http://dx.doi.org/10.1016/S0025-326X(98)00096-4
27.
27. R. Skartlien, K. Furtado, E. Sollum, P. Meakin, and I. Kralova, Physica A 390, 2291 (2011).
http://dx.doi.org/10.1016/j.physa.2011.02.022
28.
28. I. B. Ivanov, Pure Appl. Chem. 52, 1241 (1980).
http://dx.doi.org/10.1351/pac198052051241
29.
29. M. J. H. Simmons and B. J. Azzopardi, Int. J. Multiphase Flow 27, 843 (2001).
http://dx.doi.org/10.1016/S0301-9322(00)00055-0
30.
30. S. Maaß, S. Wollny, A. Voigt, and M. Kraume, Exp. Fluids 50, 259 (2011).
http://dx.doi.org/10.1007/s00348-010-0918-9
31.
31. J. A. Boxall, C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, Ind. Eng. Chem. Res. 49, 1412 (2010).
http://dx.doi.org/10.1021/ie901228e
32.
32. P. S. Denkova, S. Tcholakova, N. D. Denkov, K. D. Danov, B. Campbell, C. Shawl, and D. Kim, Langmuir 20, 11402 (2004).
http://dx.doi.org/10.1021/la048649v
33.
33. A. M. O’Rourke and P. F. MacLoughlin, Chem. Eng. Process. 44, 885 (2005).
http://dx.doi.org/10.1016/j.cep.2004.10.001
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827025
Loading
/content/aip/journal/jcp/139/17/10.1063/1.4827025
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/17/10.1063/1.4827025
2013-11-01
2014-09-17

Abstract

Lattice Boltzmann simulations of water-in-oil (W/O) type emulsions of moderate viscosity ratio (≃1/3) and with oil soluble amphiphilic surfactant were used to study the droplet size distribution in forced, steady, homogeneous turbulence, at a water volume fraction of 20%. The viscous stresses internal to the droplets were comparable to the interfacial stress (interfacial tension), and the droplet size distribution (DSD) equilibrated near the Kolmogorov scale with droplet populations in both the viscous and inertial subranges. These results were consistent with known breakup criteria for W/O and oil-in-water emulsions, showing that the maximum stable droplet diameter is proportional to the Kolmogorov scale when viscous stresses are important (in contrast to the inviscid Hinze-limit where energy loss by viscous deformation in the droplet is negligible). The droplet size distribution in the inertial subrange scaled with the known power law ∼ −10/3, as a consequence of breakup by turbulent stress fluctuations external to the droplets. When the turbulent kinetic energy was sufficiently large (with interfacial Péclet numbers above unity), we found that turbulence driven redistribution of surfactant on the interface inhibited the Marangoni effect that is otherwise induced by film draining during coalescence in more quiescent flow. The coalescence rates were therefore not sensitive to varying surfactant activity in the range we considered, and for the given turbulent kinetic energies. Furthermore, internal viscous stresses strongly influenced the breakup rates. These two effects resulted in a DSD that was insensitive to varying surfactant activity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/17/1.4827025.html;jsessionid=1f1ya948q96ph.x-aip-live-02?itemId=/content/aip/journal/jcp/139/17/10.1063/1.4827025&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Droplet size distributions in turbulent emulsions: Breakup criteria and surfactant effects from direct numerical simulations
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827025
10.1063/1.4827025
SEARCH_EXPAND_ITEM