1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Random phase approximation renormalized many-body perturbation theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/17/10.1063/1.4827254
1.
1. R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
http://dx.doi.org/10.1146/annurev.pc.32.100181.002043
2.
2. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
3.
3. O. Sode and S. Hirata, J. Phys. Chem. A 114, 8873 (2010).
http://dx.doi.org/10.1021/jp102721j
4.
4. V. Jonas and W. Thiel, J. Chem. Phys. 105, 3636 (1996).
http://dx.doi.org/10.1063/1.472234
5.
5. W. Klopper and H. P. Lüthi, Chem. Phys. Lett. 262, 546 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01129-3
6.
6. Z. Hu and R. J. Boyd, J. Chem. Phys. 113, 9393 (2000).
http://dx.doi.org/10.1063/1.1321294
7.
7. J. W. Gauld, M. N. Glukhovtsev, and L. Radom, Chem. Phys. Lett. 262, 187 (1996).
http://dx.doi.org/10.1016/0009-2614(96)01040-8
8.
8. A. Grüneis, M. Marsman, and G. Kresse, J. Chem. Phys. 133, 074107 (2010).
http://dx.doi.org/10.1063/1.3466765
9.
9. M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.053202
10.
10. A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13105
11.
11. R. J. Bartlett, V. F. Lotrich, and I. V. Schweigert, J. Chem. Phys. 123, 062205 (2005).
http://dx.doi.org/10.1063/1.1904585
12.
12. J. Olsen, O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 105, 5082 (1996).
http://dx.doi.org/10.1063/1.472352
13.
13. M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01225-0
14.
14. K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
15.
15. M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).
http://dx.doi.org/10.1103/PhysRev.106.364
16.
16. H. Eshuis and F. Furche, J. Phys. Chem. Lett. 2, 983 (2011).
http://dx.doi.org/10.1021/jz200238f
17.
17. H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012).
http://dx.doi.org/10.1007/s00214-011-1084-8
18.
18. K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, Phys. Rev. 176, 589 (1968).
http://dx.doi.org/10.1103/PhysRev.176.589
19.
19. D. L. Freeman, Phys. Rev. B 15, 5512 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.5512
20.
20. A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem. Phys. 131, 154115 (2009).
http://dx.doi.org/10.1063/1.3250347
21.
21. T. M. Henderson and G. E. Scuseria, Mol. Phys. 108, 2511 (2010).
http://dx.doi.org/10.1080/00268976.2010.507227
22.
22. J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Grüneis, G. Kresse, and M. Scheffler, New J. Phys. 14, 043002 (2012).
http://dx.doi.org/10.1088/1367-2630/14/4/043002
23.
23. X. Ren, P. Rinke, G. E. Scuseria, and M. Scheffler, Phys. Rev. B 88, 035120 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.035120
24.
24. V. Lotrich and R. J. Bartlett, J. Chem. Phys. 134, 184108 (2011).
http://dx.doi.org/10.1063/1.3570573
25.
25. G. E. Scuseria and H. F. Schaefer III, Chem. Phys. Lett. 174, 501 (1990).
http://dx.doi.org/10.1016/S0009-2614(90)87186-U
26.
26. A. Ruzsinszky, J. P. Perdew, and G. I. Csonka, J. Chem. Phys. 134, 114110 (2011).
http://dx.doi.org/10.1063/1.3569483
27.
27. J. F. Dobson, J. Wang, and T. Gould, Phys. Rev. B 66, 081108 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.081108
28.
28. F. Furche and T. Van Voorhis, J. Chem. Phys. 122, 164106 (2005).
http://dx.doi.org/10.1063/1.1884112
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4827254 for additional information on the derivation, implementation, and perturbative analysis, as well as computational details and complete results. [Supplementary Material]
30.
30. J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry (Academic, London, 1973).
31.
31. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).
32.
32. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
33.
33. G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys. 129, 231101 (2008).
http://dx.doi.org/10.1063/1.3043729
34.
34. A. Heßelmann and A. Görling, Phys. Rev. Lett. 106, 093001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.093001
35.
35. W. Klopper, A. M. Teale, S. Coriani, T. B. Pedersen, and T. Helgaker, Chem. Phys. Lett. 510, 147 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.04.101
36.
36. P. Jørgensen and J. Simons, Second Quantization-Based Methods in Quantum Chemistry (Academic Press, New York, 1981).
37.
37. F. Furche, Phys. Rev. B 64, 195120 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195120
38.
38. H. Jiang and E. Engel, J. Chem. Phys. 127, 184108 (2007).
http://dx.doi.org/10.1063/1.2795707
39.
39. J. G. Ángyán, R.-F. Liu, J. Toulouse, and G. Jansen, J. Chem. Theory Comput. 7, 3116 (2011).
http://dx.doi.org/10.1021/ct200501r
40.
40. A. Tajti, P. G. Szalay, A. G. Csaszar, M. Kallay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vazquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
http://dx.doi.org/10.1063/1.1811608
41.
41. D. Feller and K. A. Peterson, J. Chem. Phys. 110, 8384 (1999).
http://dx.doi.org/10.1063/1.478747
42.
42. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997).
http://dx.doi.org/10.1063/1.473182
43.
43. L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010).
http://dx.doi.org/10.1021/ct900489g
44.
44. L. Goerigk and S. Grimme, Phys. Chem. Chem. Phys. 13, 6670 (2011).
http://dx.doi.org/10.1039/c0cp02984j
45.
45. J. Řezáč and P. Hobza, J. Chem. Theory Comput. 9, 2151 (2013).
http://dx.doi.org/10.1021/ct400057w
46.
46. H. Eshuis and F. Furche, J. Chem. Phys. 136, 084105 (2012).
http://dx.doi.org/10.1063/1.3687005
47.
47. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
48.
48. J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. Angyan, J. Chem. Phys. 135, 084119 (2011).
http://dx.doi.org/10.1063/1.3626551
49.
49. X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.153003
50.
50. C. W. Bauschlicher Jr. and P. Maitre, Theor. Chim. Acta 90, 189 (1995).
http://dx.doi.org/10.1007/BF01113847
51.
51. F. Furche and J. P. Perdew, J. Chem. Phys. 124, 044103 (2006).
http://dx.doi.org/10.1063/1.2162161
52.
52. M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys. 122, 094116 (2005).
http://dx.doi.org/10.1063/1.1858371
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827254
Loading
/content/aip/journal/jcp/139/17/10.1063/1.4827254
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/17/10.1063/1.4827254
2013-11-06
2014-08-02

Abstract

We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al. , J. Chem. Phys.131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/17/1.4827254.html;jsessionid=2wn968kg18hpu.x-aip-live-06?itemId=/content/aip/journal/jcp/139/17/10.1063/1.4827254&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Random phase approximation renormalized many-body perturbation theory
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827254
10.1063/1.4827254
SEARCH_EXPAND_ITEM