1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: The Rosenfeld-Tarazona expression for liquids’ specific heat: A numerical investigation of eighteen systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/17/10.1063/1.4827865
1.
1. F. J. Spera, D. Nevins, M. Ghiorso, and I. Cutler, Geochim. Cosmochim. Acta 73, 6918 (2009).
http://dx.doi.org/10.1016/j.gca.2009.08.011
2.
2. T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 134, 164505 (2011).
http://dx.doi.org/10.1063/1.3582900
3.
3. Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977).
http://dx.doi.org/10.1103/PhysRevA.15.2545
4.
4. T. S. Ingebrigtsen, J. R. Errington, T. M. Truskett, and J. C. Dyre, “Predicting how nanoconfinement changes the relaxation time of a supercooled liquid,” Phys. Rev. Lett. (unpublished).
5.
5. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, 1st ed. (Oxford University Press, New York, 2009).
6.
6. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
7.
7. J. Mittal, J. R. Errington, and T. M. Truskett, J. Chem. Phys. 125, 076102 (2006).
http://dx.doi.org/10.1063/1.2336197
8.
8. S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, Phys. Rev. Lett. 109, 095705 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.095705
9.
9. M. Agarwal, M. Singh, B. S. Jabes, and C. Chakravarty, J. Chem. Phys. 134, 014502 (2011).
http://dx.doi.org/10.1063/1.3521488
10.
10. B. S. Jabes and C. Chakravarty, J. Chem. Phys. 136, 144507 (2012).
http://dx.doi.org/10.1063/1.3702436
11.
11. R. Chopra, T. M. Truskett, and J. R. Errington, J. Phys. Chem. B 114, 10558 (2010).
http://dx.doi.org/10.1021/jp1049155
12.
12. E. H. Abramson and H. West-Foyle, Phys. Rev. E 77, 041202 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041202
13.
13. G. Galliero, C. Boned, and J. Fernández, J. Chem. Phys. 134, 064505 (2011).
http://dx.doi.org/10.1063/1.3553262
14.
14. J. Mittal, J. R. Errington, and T. M. Truskett, Phys. Rev. Lett. 96, 177804 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.177804
15.
15. Y. Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998).
http://dx.doi.org/10.1080/00268979809483145
16.
16. R. D. Leonardo, L. Angelani, G. Parisi, and G. Ruocco, Phys. Rev. Lett. 84, 6054 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6054
17.
17. H.-O. May and P. Mausbach, Fluid Phase Equilib. 313, 156 (2012).
http://dx.doi.org/10.1016/j.fluid.2011.10.003
18.
18. B. Coluzzi, M. Mézard, G. Parisi, and P. Verrocchio, J. Chem. Phys. 111, 9039 (1999).
http://dx.doi.org/10.1063/1.480246
19.
19. N. Allsopp, G. Ruocco, and A. Fratalocchi, J. Comput. Phys. 231, 3432 (2012).
http://dx.doi.org/10.1016/j.jcp.2012.01.019
20.
20. I. Saika-Voivod, F. Sciortino, and P. H. Poole, Phys. Rev. E 63, 011202 (2000).
http://dx.doi.org/10.1103/PhysRevE.63.011202
21.
21. A. Scala, F. W. Starr, E. L. Nave, F. Sciortino, and H. E. Stanley, Nature (London) 406, 166 (2000).
http://dx.doi.org/10.1038/35018034
22.
22. M. Agarwal, M. Singh, R. Sharma, M. P. Alam, and C. Chakravarty, J. Phys. Chem. B 114, 6995 (2010).
http://dx.doi.org/10.1021/jp101956u
23.
23. S. Mossa, E. L. Nave, H. E. Stanley, C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. E 65, 041205 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.041205
24.
24. L. Angelani, G. Ruocco, F. Sciortino, P. Tartaglia, and F. Zamponi, Phys. Rev. E 66, 061505 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.061505
25.
25. D. C. Wallace, P. H. Sidles, and G. C. Danielson, J. Appl. Phys. 31, 168 (1960).
http://dx.doi.org/10.1063/1.1735393
26.
26. D. Bolmatov, V. V. Brazhkin, and K. Trachenko, Sci. Rep. 2, 421 (2012).
http://dx.doi.org/10.1038/srep00421
27.
27. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
28.
28. A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, J. Chem. Phys. 124, 084505 (2006).
http://dx.doi.org/10.1063/1.2168458
29.
29. T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041502
30.
30. M. Dzugutov, Phys. Rev. A 46, R2984 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.R2984
31.
31. L. A. Girifalco, J. Phys. Chem. 96, 858 (1992).
http://dx.doi.org/10.1021/j100181a061
32.
32. W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4626
33.
33. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
http://dx.doi.org/10.1063/1.458541
34.
34. J. P. Hansen and I. R. McDonald, Phys. Rev. A 11, 2111 (1975).
http://dx.doi.org/10.1103/PhysRevA.11.2111
35.
35. L. J. Lewis and G. Wahnström, J. Non-Cryst. Solids 172–174, 69 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90418-9
36.
36. T. S. Ingebrigtsen, L. Bøhling, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 136, 061102 (2012).
http://dx.doi.org/10.1063/1.3685804
37.
37. R. A. Buckingham, Proc. R. Soc. London, Ser. A 168, 264 (1938).
http://dx.doi.org/10.1098/rspa.1938.0173
38.
38. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
39.
39. G. Wahnström, Phys. Rev. A 44, 3752 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.3752
40.
40. R. G. D. Steel and J. H. Torrie, Principles and Procedures of Statistics (McGraw-Hill, New York, 1960).
41.
41. T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.011011
42.
42. D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T. Christensen, N. B. Olsen, T. B. Schrøder, D. Fragiadakis, R. Casalini, C. M. Roland, J. C. Dyre, and K. Niss, Nat. Phys. 7, 816 (2011).
http://dx.doi.org/10.1038/nphys2031
43.
43. J. C. Dyre, Phys. Rev. E 87, 022106 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.022106
44.
44. N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
45.
45. L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and T. B. Schrøder, New J. Phys. 14, 113035 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113035
46.
46. D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
http://dx.doi.org/10.1021/jp710457e
47.
47. C. M. Roland, R. Casalini, and M. Paluch, Chem. Phys. Lett. 367, 259 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01655-X
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827865
Loading
/content/aip/journal/jcp/139/17/10.1063/1.4827865
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/17/10.1063/1.4827865
2013-11-01
2014-07-12

Abstract

We investigate the accuracy of the expression of Rosenfeld and Tarazona (RT) for the excess isochoric heat capacity, , for 18 model liquids. Previous investigations have reported no unifying features of breakdown for the RT expression. Here, liquids with different stoichiometric composition, molecular topology, chemical interactions, degree of undercooling, and environment are investigated. The RT expression is a better approximation for liquids with strong correlations between equilibrium fluctuations of virial and potential energy, i.e., “Roskilde-simple” liquids[T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X2, 011011 (2012)]. This observation holds even for molecular liquids under severe nanoscale confinement which does not follow from the original RT bulk hard-sphere fluid perturbation theory arguments. The density dependence of the specific heat is predicted from the isomorph theory for Roskilde-simple liquids, which in combination with the RT expression provides a complete description of the specific heat's density and temperature dependence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/17/1.4827865.html;jsessionid=14d0lo2sk30mr.x-aip-live-03?itemId=/content/aip/journal/jcp/139/17/10.1063/1.4827865&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: The Rosenfeld-Tarazona expression for liquids’ specific heat: A numerical investigation of eighteen systems
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/17/10.1063/1.4827865
10.1063/1.4827865
SEARCH_EXPAND_ITEM