1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Using the uncertainty principle to design simple interactions for targeted self-assembly
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/2/10.1063/1.4812727
1.
1. P. W. K. Rothemund, Nature (London) 440, 297 (2006).
http://dx.doi.org/10.1038/nature04586
2.
2. Y. Bao, M. Beerman, and K. M. Krishnan, J. Magn. Magn. Mater. 272–276 (Suppl.), E1367 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.219
3.
3. A. Yethiraj and A. van Blaaderen, Nature 421, 513 (2003).
http://dx.doi.org/10.1038/nature01328
4.
4. Y.-S. Cho, G.-R. Yi, J.-M. Lim, S.-H. Kim, V. N. Manoharan, D. J. Pine, and S.-M. Yang, J. Amer. Chem. Soc. 127, 15968 (2005).
http://dx.doi.org/10.1021/ja0550632
5.
5. A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, Nature (London) 466, 474 (2010).
http://dx.doi.org/10.1038/nature09188
6.
6. Q. Chen, S. C. Bae, and S. Granick, Nature (London) 469, 381 (2011).
http://dx.doi.org/10.1038/nature09713
7.
7. S. Mossa, F. Sciortino, P. Tartaglia, and E. Zaccarelli, Langmuir 20, 10756 (2004).
http://dx.doi.org/10.1021/la048554t
8.
8. Z. Zhang and S. C. Glotzer, Nano Lett. 4, 1407 (2004).
http://dx.doi.org/10.1021/nl0493500
9.
9. S. C. Glotzer, M. J. Solomon, and N. A. Kotov, AIChE J. 50, 2978 (2004).
http://dx.doi.org/10.1002/aic.10413
10.
10. M. Engel and H.-R. Trebin, Phys. Rev. Lett. 98, 225505 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.225505
11.
11. H. Spillmann, A. Dmitriev, N. Lin, P. Messina, J. V. Barth, and K. Kern, J. Am. Chem. Soc. 125, 10725 (2003).
http://dx.doi.org/10.1021/ja0362353
12.
12. J. C. Sinclair, K. M. Davies, C. Venien-Bryan, and M. E. M. Noble, Nat. Nanotechnol. 6, 558 (2011).
http://dx.doi.org/10.1038/nnano.2011.122
13.
13. R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, Science 334, 204 (2011).
http://dx.doi.org/10.1126/science.1210493
14.
14. H. Cohn and A. Kumar, Proc. Natl. Acad. Sci. U.S.A. 106, 9570 (2009).
http://dx.doi.org/10.1073/pnas.0901636106
15.
15. S. Hormoz and M. P. Brenner, Proc. Natl. Acad. Sci. U.S.A. 108, 5193 (2011).
http://dx.doi.org/10.1073/pnas.1014094108
16.
16. S. Torquato, Soft Matter 5, 1157 (2009).
http://dx.doi.org/10.1039/b814211b
17.
17. E. Edlund, O. Lindgren, and M. Nilsson Jacobi, Phys. Rev. Lett. 107, 085503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.085503
18.
18. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, Nature Mater. 7, 527 (2008).
http://dx.doi.org/10.1038/nmat2206
19.
19. K. Bishop, C. Wilmer, S. Soh, and B. Grzybowski, Small 5, 1600 (2009).
http://dx.doi.org/10.1002/smll.200900358
20.
20. C. E. Castro, F. Kilchherr, D.-N. Kim, E. L. Shiao, T. Wauer, P. Wortmann, M. Bathe, and H. Dietz, Nat. Methods 8, 221 (2011).
http://dx.doi.org/10.1038/nmeth.1570
21.
21. E. Bianchi, R. Blaak, and C. N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011).
http://dx.doi.org/10.1039/c0cp02296a
22.
22. G. Folland and A. Sitaram, J. Fourier Anal. Appl. 3, 207 (1997).
http://dx.doi.org/10.1007/BF02649110
23.
23. E. Marcotte, F. H. Stillinger, and S. Torquato, Soft Matter 7, 2332 (2011).
http://dx.doi.org/10.1039/c0sm01205j
24.
24. A. Jain, J. R. Errington, and T. M. Truskett, Soft Matter 9, 38663870 (2013).
http://dx.doi.org/10.1039/c3sm27785b
25.
25.Defining good measures of complexity is surprisingly hard and the subject has a long and contentious history.36–38 None of the existing measures pertains to complexity in interaction potentials and we doubt one will be found. Even if we could define a quantitative measure with desirable theoretical properties, it is unlikely it will agree with realizability in the wide range of experimental systems available today.
26.
26.Materials exhibiting this property have been called “stealth-materials.”39
27.
27. M. Florescu, S. Torquato, and P. J. Steinhardt, Proc. Natl. Acad. Sci. U.S.A. 106, 20658 (2009).
http://dx.doi.org/10.1073/pnas.0907744106
28.
28.The effect of the penalty at low wave numbers was referred to as hyper-uniformity in Ref. 27.
29.
29. M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, Nature (London) 404, 376 (2000).
http://dx.doi.org/10.1038/35006031
30.
30. S. Jenekhe and X. L. Chen, Science 283, 372 (1999).
http://dx.doi.org/10.1126/science.283.5400.372
31.
31.Equation (5) is defined in two dimensions, the generalization to 3D is .
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4812727 for table of the potentials and suggested simulation parameters and the interaction potentials. [Supplementary Material]
33.
33. C. N. Likos, Phys. Rep. 348, 267 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
34.
34. A. Yethiraj, Soft Matter 3, 1099 (2007).
http://dx.doi.org/10.1039/b704251p
35.
35. R. Roth, R. Evans, and S. Dietrich, Phys. Rev. E 62, 5360 (2000);
http://dx.doi.org/10.1103/PhysRevE.62.5360
35.M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. Lett. 82, 117 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.117
36.
36. R. Badii and A. Politi, Complexity: Hierarchical Structures and Scaling in Physics (Cambridge University Press, Cambridge, UK, 1999).
37.
37. S. Lloyd and H. Pagels, Ann. Phys. (N.Y.) 188, 186 (1988).
http://dx.doi.org/10.1016/0003-4916(88)90094-2
38.
38. J. Crutchfield and K. Young, Phys. Rev. Lett. 63, 105 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.105
39.
39. F. S. R. D. Batten and S. Torquato, J. Appl. Phys. 104, 033504 (2008).
http://dx.doi.org/10.1063/1.2961314
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/2/10.1063/1.4812727
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Heat kernel smoothing simplifying interactions for suppressed diffraction around a wavelength. A potential is constructed using (5) to penalize a certain wavelength κ and the inverse Fourier transform gives the corresponding interactions, which have long-ranged oscillations (a). By applying the heat kernel smoothing in (3) , we can successively simplify the interactions (b)–(c) until only a single minimum and maximum remains. (d)–(f) Low temperature configurations from Monte Carlo simulations verifying that the interactions cause self-organization into states with diffraction patterns with pronounced frequency gaps (insets show their diffraction patterns).

Image of FIG. 2.

Click to view

FIG. 2.

The main results: simplified interactions designed for lattice self-assembly. The curves show the interactions from (6) for targeted self-assembly in reciprocal space (inset) and in real space of a Kagome lattice (a) and a diamond lattice (b). The gray curves are the basic construction with almost no screening or smoothing while the red curves show the optimized potentials after applying the method defined in (3) . As a reference we also show a previously published potential (blue curve) causing self-assembly of the Kagome lattice.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Time snapshots of a Monte Carlo simulation of a particle system that starts in a random initial configuration and relaxes to the target Kagome lattice at constant low temperature. The interaction potential used is shown in Fig. 2 . (b) Configuration at high temperature after 25 × 10 sweeps, the Kagome pattern can assemble even with large temperature induced perturbations from the exact lattice. The pattern is highlighted by joining particles with their 4 closest neighbours. (c) If the particle density does not match a space filling Kagome lattice, grains with different particle density will also form to compensate. In this example, the particle density is 0.9 times that of that the target lattice.

Loading

Article metrics loading...

/content/aip/journal/jcp/139/2/10.1063/1.4812727
2013-07-10
2014-04-16

Abstract

We present a method that systematically simplifies isotropic interactions designed for targeted self-assembly. The uncertainty principle is used to show that an optimal simplification is achieved by a combination of heat kernel smoothing and Gaussian screening of the interaction potential in real and reciprocal space. We use this method to analytically design isotropic interactions for self-assembly of complex lattices and of materials with functional properties. The derived interactions are simple enough to narrow the gap between theory and experimental implementation of theory based designed self-assembling materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/2/1.4812727.html;jsessionid=dlqt86fpdadat.x-aip-live-02?itemId=/content/aip/journal/jcp/139/2/10.1063/1.4812727&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Using the uncertainty principle to design simple interactions for targeted self-assembly
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/2/10.1063/1.4812727
10.1063/1.4812727
SEARCH_EXPAND_ITEM