1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/2/10.1063/1.4812819
1.
1. N. Blagden, M. de Matas, P. Gavan, and P. York, Adv. Drug Delivery Rev. 59, 617 (2007).
http://dx.doi.org/10.1016/j.addr.2007.05.011
2.
2. S. L. Price, Adv. Drug Delivery Rev. 56, 301 (2004).
http://dx.doi.org/10.1016/j.addr.2003.10.006
3.
3. C. M. Reddy, G. Rama Krishna, and S. Ghosh, Cryst. Eng. Comm. 12, 2296 (2010).
http://dx.doi.org/10.1039/c003466e
4.
4. D. M. S. Martins, D. S. Middlemiss, C. R. Pulham, C. C. Wilson, M. T. Weller, P. F. Henry, N. Shankland, K. Shankland, W. G. Marshall, R. M. Ibberson, K. Knight, S. Moggach, M. Brunelli, and C. A. Morrison, J. Am. Chem. Soc. 131, 3884 (2009).
http://dx.doi.org/10.1021/ja8082973
5.
5. S. Karki, T. Friščcí, L. Fábián, P. R. Laity, G. M. Day, and W. Jones, Adv. Mater. 21, 3905 (2009).
http://dx.doi.org/10.1002/adma.200900533
6.
6. D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, E. Bartashevich, S. X. M. Boerrigter, D. E. Braun, A. J. Cruz-Cabeza, G. M. Day, R. G. Della Valle, G. R. Desiraju, B. P. van Eijck, J. C. Facelli, M. B. Ferraro, D. Grillo, M. Habgood, D. W. M. Hofmann, F. Hofmann, K. V. J. Jose, P. G. Karamertzanis, A. V. Kazantsev, J. Kendrick, L. N. Kuleshova, F. J. J. Leusen, A. V. Maleev, A. J. Misquitta, S. Mohamed, R. J. Needs, M. A. Neumann, D. Nikylov, A. M. Orendt, R. Pal, C. C. Pantelides, C. J. Pickard, L. S. Price, S. L. Price, H. A. Scheraga, J. van de Streek, T. S. Thakur, S. Tiwari, E. Venuti, and I. K. Zhitkov, Acta Crystallogr., Sect. B: Struct. Sci. 67, 535 (2011).
http://dx.doi.org/10.1107/S0108768111042868
7.
7. S. L. Price, Acc. Chem. Res. 42, 117 (2009).
http://dx.doi.org/10.1021/ar800147t
8.
8. D. C. Sorescu and B. M. Rice, J. Phys. Chem. C 114, 6734 (2010).
http://dx.doi.org/10.1021/jp100379a
9.
9. S. Hunter, T. Sutinen, S. F. Parker, C. A. Morrison, D. M. Williamson, S. Thompson, P. J. Gould, and C. R. Pulham, J. Phys. Chem. C 117, 8062 (2013).
http://dx.doi.org/10.1021/jp4004664
10.
10. C. A. Morrison, M. M. Siddick, P. J. Camp, and C. C. Wilson, J. Am. Chem. Soc. 127, 4042 (2005).
http://dx.doi.org/10.1021/ja043327z
11.
11. A. M. Reilly, D. S. Middlemiss, M. M. Siddick, D. A. Wann, G. J. Ackland, C. C. Wilson, D. W. H. Rankin, and C. A. Morrison, J. Phys. Chem. A 112, 1322 (2008).
http://dx.doi.org/10.1021/jp0757053
12.
12. A. M. Reilly, S. Habershon, C. A. Morrison, and D. W. H. Rankin, J. Chem. Phys. 132, 094502 (2010).
http://dx.doi.org/10.1063/1.3335817
13.
13. S. Sharifzadeh, A. Biller, L. Kronik, and J. B. Neaton, Phys. Rev. B 85, 125307 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125307
14.
14. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
15.
15. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).
http://dx.doi.org/10.1021/jp973084f
16.
16. J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
17.
17. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
18.
18. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
19.
19. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
20.
20. A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007).
http://dx.doi.org/10.1063/1.2795701
21.
21. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.246401
21.T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Phys. Rev. B 76, 125112 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125112
22.
22. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
23.
23. S. Wen and G. J. O. Beran, J. Chem. Theory Comput. 8, 2698 (2012).
http://dx.doi.org/10.1021/ct300484h
24.
24. G. J. O. Beran and K. Nanda, J. Phys. Chem. Lett. 1, 3480 (2010).
http://dx.doi.org/10.1021/jz101383z
25.
25. L. Maschio, B. Civalleri, P. Ugliengo, and A. Gavezzotti, J. Phys. Chem. A 115, 11179 (2011).
http://dx.doi.org/10.1021/jp203132k
26.
26. Z. Zheng, J. Zhao, Y. Sun, and S. Zhang, Chem. Phys. Lett. 550, 94 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.09.017
27.
27. J. C. Sancho-García, J. Aragó, E. Ortí, and Y. Olivier, J. Chem. Phys. 138, 204304 (2013).
http://dx.doi.org/10.1063/1.4806436
28.
28. A. Gavezzotti and G. Filippini, “Energetic aspects of crystal packing: experiment and computer simulations,” in Theoretical Aspects and Computer Modeling of the Molecular Solid State (Wiley and Sons, Chichester, 1997), pp. 6197.
29.
29. W. A. Al-Saidi, V. K. Voora, and K. D. Jordan, J. Chem. Theory Comput. 8, 1503 (2012).
http://dx.doi.org/10.1021/ct200618b
30.
30. A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Phys. 137, 054103 (2012).
http://dx.doi.org/10.1063/1.4738961
31.
31. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).
http://dx.doi.org/10.1126/science.1158722
32.
32. B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
33.
33. A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Phys. 136, 174109 (2012).
http://dx.doi.org/10.1063/1.4705760
34.
34. A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028 (2013).
http://dx.doi.org/10.1021/jz400226x
35.
35. A. Tkatchenko, R. A. DiStasio Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
36.
36. R. A. DiStasio Jr., O. A. von Lilienfeld, and A. Tkatchenko, Proc. Natl. Acad. Sci. U.S.A. 109, 14791 (2012).
http://dx.doi.org/10.1073/pnas.1208121109
37.
37. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
38.
38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).
http://dx.doi.org/10.1524/zkri.220.5.567.65075
40.
40.The choice of ultra-soft pseudo-potentials was motivated by initial computational difficulties that have since been resolved such that ultra-soft and norm-conserving pseudo-potentials give very similar results. All-electron calculations have also been used to validate selected systems.
41.
41. E. R. McNellis, J. Meyer, and K. Reuter, Phys. Rev. B 80, 205414 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205414
42.
42. F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 58, 380 (2002).
http://dx.doi.org/10.1107/S0108768102003890
43.
43. S. A. Blair and A. J. Thakkar, Chem. Phys. Lett. 495, 198 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.019
44.
44. N. Vogt, M. A. Abaev, A. N. Rykov, and I. F. Shishkov, J. Mol. Struct. 996, 120 (2011).
http://dx.doi.org/10.1016/j.molstruc.2011.04.034
45.
45. M. A. R. da Silva, M. J. Monte, and J. R. Ribeiro, J. Chem. Thermodyn. 33, 23 (2001).
http://dx.doi.org/10.1006/jcht.2000.0715
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4812819 for an archive file containing the PBE+TS optimized solid-state and gas-phase structures of the 23 systems, along with the PBE Hirshfeld volumes. [Supplementary Material]
47.
47. A. Mayer, Phys. Rev. B 75, 045407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045407
48.
48. B. T. Thole, Chem. Phys. 59, 341 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85176-2
49.
49. A. Tkatchenko, A. Ambrosetti, and R. A. DiStasio Jr., J. Chem. Phys. 138, 074106 (2013).
http://dx.doi.org/10.1063/1.4789814
50.
50. T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, Phys. Rev. B 87, 064110 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.064110
51.
51. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
52.
52. W. Frank, C. Elsässer, and M. Fähnle, Phys. Rev. Lett. 74, 1791 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1791
53.
53. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4063
54.
54. J. S. Chickos and W. E. Acree, J. Phys. Chem. Ref. Data 31, 537 (2002).
http://dx.doi.org/10.1063/1.1475333
55.
55. M. V. Roux, M. Temprado, J. S. Chickos, and Y. Nagano, J. Phys. Chem. Ref. Data 37, 1855 (2008).
http://dx.doi.org/10.1063/1.2955570
56.
56. M. Johnson, K. Parlinski, I. Natkaniec, and B. Hudson, Chem. Phys. 291, 53 (2003).
http://dx.doi.org/10.1016/S0301-0104(03)00178-2
57.
57. S.-S. Chang and E. F. Westrum, J. Phys. Chem. 64, 1547 (1960).
http://dx.doi.org/10.1021/j100839a050
58.
58. P. Goursot, H. L. Girdhar, and E. F. Westrum, J. Phys. Chem. 74, 2538 (1970).
http://dx.doi.org/10.1021/j100706a022
59.
59. J. P. McCullough, H. L. Finke, J. F. Messerly, S. S. Todd, T. C. Kincheloe, and G. Waddington, J. Phys. Chem. 61, 1105 (1957).
http://dx.doi.org/10.1021/j150554a016
60.
60. C. E. Vanderzee and E. F. Westrum Jr., J. Chem. Thermodyn. 2, 681 (1970).
http://dx.doi.org/10.1016/0021-9614(70)90043-1
61.
61. M. V. Bommel, J. V. Miltenburg, and A. Schuijff, J. Chem. Thermodyn. 20, 397 (1988).
http://dx.doi.org/10.1016/0021-9614(88)90176-0
62.
62. O. Andersson, T. Matsuo, H. Suga, and P. Ferloni, Int. J. Thermophys. 14, 149 (1993).
http://dx.doi.org/10.1007/BF00522668
63.
63. B. Schatschneider, J.-J. Liang, A. M. Reilly, N. Marom, G.-X. Zhang, and A. Tkatchenko, Phys. Rev. B 87, 060104 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.060104
64.
64.See http://webbook.nist.gov/chemistry/name-ser.html for “NIST WebBook, and references within” (accessed Feb. 2013).
65.
65. J. S. Chickos, Netsu Sokutei 30, 125 (2003).
66.
66. H. de Wit, J. V. Miltenburg, and C. D. Kruif, J. Chem. Thermodyn. 15, 651 (1983).
http://dx.doi.org/10.1016/0021-9614(83)90079-4
67.
67. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
http://dx.doi.org/10.1063/1.1723844
68.
68. O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
69.
69. A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Phys. 138, 054103 (2013).
http://dx.doi.org/10.1063/1.4789421
70.
70. T. Risthaus and S. Grimme, J. Chem. Theory Comput. 9, 1580 (2013).
http://dx.doi.org/10.1021/ct301081n
71.
71. E. J. Meijer and M. Sprik, J. Chem. Phys. 105, 8684 (1996).
http://dx.doi.org/10.1063/1.472649
72.
72. N. Marom, R. A. DiStasio Jr., V. Atalla, S. Levchenko, A. M. Reilly, J. R. Chelikowsky, L. Leiserowitz, and A. Tkatchenko, Angew. Chem., Int. Ed. 52, 6629 (2013).
http://dx.doi.org/10.1002/anie.201301938
73.
73. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
74.
74. A. Tkatchenko and O. A. von Lilienfeld, Phys. Rev. B 78, 045116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045116
75.
75. C. A. Guido, E. Brémond, C. Adamo, and P. Cortona, J. Chem. Phys. 138, 021104 (2013).
http://dx.doi.org/10.1063/1.4775591
76.
76. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003);
http://dx.doi.org/10.1063/1.1564060
76.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
77.
77. O. A. Vydrov and T. Van Voorhis, Phys. Rev. A 81, 062708 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.062708
78.
78. A. J. Stone, Science 321, 787 (2008).
http://dx.doi.org/10.1126/science.1158006
79.
79. P. Hao, Y. Fang, J. Sun, G. I. Csonka, P. H. T. Philipsen, and J. P. Perdew, Phys. Rev. B 85, 014111 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014111
80.
80. S. C. Capelli, A. Albinati, S. A. Mason, and B. T. M. Willis, J. Phys. Chem. A 110, 11695 (2006).
http://dx.doi.org/10.1021/jp062953a
81.
81. A. W. Hewat and C. Riekel, Acta Crystallogr., Sect. A: Found. Crystallogr. 35, 569 (1979).
http://dx.doi.org/10.1107/S0567739479001340
82.
82. S. Swaminathan, B. M. Craven, and R. K. McMullan, Acta Crystallogr., Sect. B: Struct. Sci. 40, 300 (1984).
http://dx.doi.org/10.1107/S0108768184002135
83.
83. C. J. Craven, P. D. Hatton, C. J. Howard, and G. S. Pawley, J. Chem. Phys. 98, 8236 (1993).
http://dx.doi.org/10.1063/1.464528
84.
84. R. Boese, D. Bläser, R. Latz, and A. Bäumen, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 55, IUC9900001 (1999).
85.
85. G. de With, S. Harkema, and D. Feil, Acta Crystallogr., Sect. B: Struct. Sci. 32, 3178 (1976).
http://dx.doi.org/10.1107/S0567740876009904
86.
86. N. Marom, A. Tkatchenko, M. Rossi, V. V. Gobre, O. Hod, M. Scheffler, and L. Kronik, J. Chem. Theory Comput. 7, 3944 (2011).
http://dx.doi.org/10.1021/ct2005616
87.
87. S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 8, 4305 (2012).
http://dx.doi.org/10.1021/ct300657h
88.
88. N. Mardirossian, D. S. Lambrecht, L. McCaslin, S. S. Xantheas, and M. Head-Gordon, J. Chem. Theory Comput. 9, 1368 (2013).
http://dx.doi.org/10.1021/ct4000235
89.
89. W. Keesom and J. Köhler, Physica 1, 655 (1934);
http://dx.doi.org/10.1016/S0031-8914(34)80253-4
89.A. Curzon, Physica 59, 733 (1972).
http://dx.doi.org/10.1016/0031-8914(72)90101-2
90.
90. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/2/10.1063/1.4812819
Loading
/content/aip/journal/jcp/139/2/10.1063/1.4812819
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/2/10.1063/1.4812819
2013-07-14
2014-07-24

Abstract

The development and application of computational methods for studying molecular crystals, particularly density-functional theory (DFT), is a large and ever-growing field, driven by their numerous applications. Here we expand on our recent study of the importance of many-body van der Waals interactions in molecular crystals [A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett.4, 1028 (Year: 2013)10.1021/jz400226x], with a larger database of 23 molecular crystals. Particular attention has been paid to the role of the vibrational contributions that are required to compare experiment sublimation enthalpies with calculated lattice energies, employing both phonon calculations and experimental heat-capacity data to provide harmonic and anharmonic estimates of the vibrational contributions. Exact exchange, which is rarely considered in DFT studies of molecular crystals, is shown to have a significant contribution to lattice energies, systematically improving agreement between theory and experiment. When the vibrational and exact-exchange contributions are coupled with a many-body approach to dispersion, DFT yields a mean absolute error (3.92 kJ/mol) within the coveted “chemical accuracy” target (4.2 kJ/mol). The role of many-body dispersion for structures has also been investigated for a subset of the database, showing good performance compared to X-ray and neutron diffraction crystal structures. The results show that the approach employed here can reach the demanding accuracy of crystal-structure prediction and organic material design with minimal empiricism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/2/1.4812819.html;jsessionid=59ge567spprr2.x-aip-live-06?itemId=/content/aip/journal/jcp/139/2/10.1063/1.4812819&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/2/10.1063/1.4812819
10.1063/1.4812819
SEARCH_EXPAND_ITEM