1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/2/10.1063/1.4812826
1.
1. J. Peet, A. J. Heeger, and G. C. Bazan, Acc. Chem. Res. 42, 1700 (2009).
http://dx.doi.org/10.1021/ar900065j
2.
2. J. Roncali, Acc. Chem. Res. 42, 1719 (2009).
http://dx.doi.org/10.1021/ar900041b
3.
3. W. J. Potscavage, A. Sharma, and B. Kippelen, Acc. Chem. Res. 42, 1758 (2009).
http://dx.doi.org/10.1021/ar900139v
4.
4. J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, and J. M. Frost, Acc. Chem. Res. 42, 1768 (2009).
http://dx.doi.org/10.1021/ar900119f
5.
5. R. Po, M. Maggini, and N. Camaioni, J. Phys. Chem. C 114, 695 (2010).
http://dx.doi.org/10.1021/jp9061362
6.
6. R. F. Service, Science 332, 293 (2011).
http://dx.doi.org/10.1126/science.332.6027.293
7.
7. Y. Liang and L. Yu, Acc. Chem. Res. 43, 1227 (2010).
http://dx.doi.org/10.1021/ar1000296
8.
8. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K.-H. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
9.
9. T.-Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).
http://dx.doi.org/10.1021/ja200314m
10.
10. Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. P. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
11.
11. J.-L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009).
http://dx.doi.org/10.1021/ar900099h
12.
12. H. J. Son, B. Carsten, I. H. Jung, and L. Yu, Energy Environ. Sci. 5, 8158 (2012).
http://dx.doi.org/10.1039/c2ee21608f
13.
13. A. F. Voter, in Radiation Effects in Solids, edited by K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga (Springer, Dordrecht, Netherlands, 2006), pp. 123.
14.
14. K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090 (1991).
http://dx.doi.org/10.1063/1.461138
15.
15. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Wien, Germany, 1984).
16.
16. L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R. G. E. Kimber, and A. B. Walker, J. Phys. Chem. B 114, 36 (2010).
http://dx.doi.org/10.1021/jp907167u
17.
17. L. Meng, D. Wang, Q. Li, Y. Yi, J.-L. Bredas, and Z. Shuai, J. Chem. Phys. 134, 124102 (2011).
http://dx.doi.org/10.1063/1.3569130
18.
18. H. Yan, S. Swaraj, C. Wang, I. Hwang, N. C. Greenham, C. Groves, H. Ade, and C. R. McNeill, Adv. Funct. Mater. 20, 4329 (2010).
http://dx.doi.org/10.1002/adfm.201001292
19.
19. B. Zacher and N. R. Armstrong, J. Phys. Chem. C 115, 25496 (2011).
http://dx.doi.org/10.1021/jp207471f
20.
20. P. K. Watkins, A. B. Walker, and G. L. B. Verschoor, Nano Lett. 5, 1814 (2005).
http://dx.doi.org/10.1021/nl051098o
21.
21. R. G. E. Kimber, A. B. Walker, G. E. Schröder-Turk, and D. J. Cleaver, Phys. Chem. Chem. Phys. 12, 844 (2010).
http://dx.doi.org/10.1039/b916340a
22.
22. N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv. Mater. 21, 2741 (2009).
http://dx.doi.org/10.1002/adma.200803541
23.
23. M. Casalegno, C. Carbonera, S. Luzzati, and G. Raos, Org. Electron. 13, 750 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.024
24.
24. M. Casalegno, G. Raos, and R. Po, J. Chem. Phys. 132, 094705 (2010).
http://dx.doi.org/10.1063/1.3337909
25.
25. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).
http://dx.doi.org/10.1016/0021-9991(75)90060-1
26.
26. D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90041-3
27.
27. R. G. E. Kimber, E. N. Wright, S. E. J. O'Kane, A. B. Walker, and J. C. Blakesley, Phys. Rev. B 86, 235206 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235206
28.
28. V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, and D. Andrienko, J. Chem. Theory Comput. 7, 3335 (2011).
http://dx.doi.org/10.1021/ct200388s
29.
29. H. Houili, E. Tutiš, I. Batistić, and L. Zuppiroli, J. Appl. Phys. 100, 033702 (2006).
http://dx.doi.org/10.1063/1.2222041
30.
30. W. Pasveer, J. Cottaar, P. Bobbert, and M. Michels, Synth. Met. 152, 157 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.07.164
31.
31. Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin, and A. R. Bishop, Phys. Rev. B 63, 085202 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.085202
32.
32. J. J. M. van der Holst, M. A. Uijttewaal, B. Ramachandhran, R. Coehoorn, P. A. Bobbert, G. A. de Wijs, and R. A. de Groot, Phys. Rev. B 79, 085203 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085203
33.
33. E. Tutiš, I. Batistić, and D. Berner, Phys. Rev. B 70, 161202 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161202
34.
34. J. A. Freire and G. Voss, J. Chem. Phys. 122, 124705 (2005).
http://dx.doi.org/10.1063/1.1868555
35.
35. W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206601
36.
36. W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Status Solidi C 1, 164 (2004).
http://dx.doi.org/10.1002/pssc.200303631
37.
37. M. Bouhassoune, S. van Mensfoort, P. Bobbert, and R. Coehoorn, Org. Electron. 10, 437 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.01.005
38.
38. Y. Y. Yimer, P. A. Bobbert, and R. Coehoorn, Synth. Met. 159, 2399 (2009).
http://dx.doi.org/10.1016/j.synthmet.2009.10.025
39.
39. K. Meisel, W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. de Leeuw, and M. Michels, Phys. Status Solidi C 3, 267 (2006).
http://dx.doi.org/10.1002/pssc.200562718
40.
40. Y. Y. Yimer, P. A. Bobbert, and R. Coehoorn, J. Phys.: Condens. Matter 20, 335204 (2008).
http://dx.doi.org/10.1088/0953-8984/20/33/335204
41.
41. J. Cottaar and P. A. Bobbert, Phys. Rev. B 74, 115204 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.115204
42.
42. N. Rappaport, Y. Preezant, and N. Tessler, Phys. Rev. B 76, 235323 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.235323
43.
43. Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin, and A. R. Bishop, Phys. Rev. Lett. 84, 721 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.721
44.
44. M. J. Y. Tayebjee, L. C. Hirst, N. J. Ekins-Daukes, and T. W. Schmidt, J. Appl. Phys. 108, 124506 (2010).
http://dx.doi.org/10.1063/1.3517826
45.
45. M. Einax, M. Dierl, and A. Nitzan, J. Phys. Chem. C 115, 21396 (2011).
http://dx.doi.org/10.1021/jp205856x
46.
46. K. O. Sylvester-Hvid and M. A. Ratner, J. Phys. Chem. B 109, 200 (2005).
http://dx.doi.org/10.1021/jp0463767
47.
47. K. O. Sylvester-Hvid, S. Rettrup, and M. A. Ratner, J. Phys. Chem. B 108, 4296 (2004).
http://dx.doi.org/10.1021/jp036467o
48.
48. F. Xu and D. Yan, Appl. Phys. Lett. 99, 113303 (2011).
http://dx.doi.org/10.1063/1.3639273
49.
49. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).
http://dx.doi.org/10.1103/PhysRev.120.745
50.
50. J. Kern, S. Schwab, C. Deibel, and V. Dyakonov, Phys. Status Solidi (RRL) 5, 364 (2011).
http://dx.doi.org/10.1002/pssr.201105430
51.
51. J. A. Barker, C. M. Ramsdale, and N. C. Greenham, Phys. Rev. B 67, 075205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.075205
52.
52. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, and P. W. M. Blom, Appl. Phys. Lett. 86, 123509 (2005).
http://dx.doi.org/10.1063/1.1889240
53.
53. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085205
54.
54. C. de Falco, R. Sacco, and M. Verri, Comput. Methods Appl. Mech. Eng. 199, 1722 (2010).
http://dx.doi.org/10.1016/j.cma.2010.01.018
55.
55. C. de Falco, M. Porro, R. Sacco, and M. Verri, Comput. Methods Appl. Mech. Eng. 245–246, 102 (2012).
http://dx.doi.org/10.1016/j.cma.2012.06.018
56.
56. L. Onsager, Phys. Rev. 54, 554 (1938).
http://dx.doi.org/10.1103/PhysRev.54.554
57.
57. C. L. Braun, J. Chem. Phys. 80, 4157 (1984).
http://dx.doi.org/10.1063/1.447243
58.
58. C. Deibel, T. Strobel, and V. Dyakonov, Phys. Rev. Lett. 103, 036402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.036402
59.
59. K. Falkowski, W. Stampor, P. Grygiel, and W. Tomaszewicz, Chem. Phys. 392, 122 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.10.032
60.
60. T. Strobel, C. Deibel, and V. Dyakonov, Phys. Rev. Lett. 105, 266602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266602
61.
61. M. Wojcik and M. Tachiya, J. Chem. Phys. 130, 104107 (2009).
http://dx.doi.org/10.1063/1.3082005
62.
62. M. Hilczer and M. Tachiya, J. Phys. Chem. C 114, 6808 (2010).
http://dx.doi.org/10.1021/jp912262h
63.
63. H. Sano and M. Tachiya, J. Chem. Phys. 71, 1276 (1979).
http://dx.doi.org/10.1063/1.438427
64.
64. K. M. Hong and J. Noolandi, J. Chem. Phys. 68, 5163 (1978).
http://dx.doi.org/10.1063/1.435636
65.
65. T. Offermans, S. C. J. Meskers, and R. A. J. Janssen, Chem. Phys. 308, 125 (2005).
http://dx.doi.org/10.1016/j.chemphys.2004.08.015
66.
66. J. J. M. van der Holst, F. W. A. van Oost, R. Coehoorn, and P. A. Bobbert, Phys. Rev. B 83, 085206 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.085206
67.
67. J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, and X. Y. Hou, Phys. Rev. B 75, 153201 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.153201
68.
68. A. Einstein, Ann. Phys. 322, 549 (1905).
http://dx.doi.org/10.1002/andp.19053220806
69.
69. M. V. Smoluchowski, Ann. Phys. 326, 756 (1906).
http://dx.doi.org/10.1002/andp.19063261405
70.
70. P. Langevin, Ann. Chim. Phys. 28, 433 (1903).
71.
71. H. Bässler, Phys. Status Solidi B 175, 15 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
72.
72. U. Wolf, V. I. Arkhipov, and H. Bässler, Phys. Rev. B 59, 7507 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7507
73.
73. V. I. Arkhipov, U. Wolf, and H. Bässler, Phys. Rev. B 59, 7514 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7514
74.
74.See http://www.openmp.org/mp-documents/OpenMP3.1.pdfOpenmp application program interface” (last accessed January 25, 2013).
75.
75. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
76.
76. H. Wang, Y. He, Y. Li, and H. Su, J. Phys. Chem. A 116, 255 (2012).
http://dx.doi.org/10.1021/jp208520v
77.
77. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
78.
78. A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C 113, 20050 (2009).
http://dx.doi.org/10.1021/jp9050897
79.
79. A. L. Ayzner, S. C. Doan, B. Tremolet de Villers, and B. J. Schwartz, J. Phys. Chem. Lett. 3, 2281 (2012).
http://dx.doi.org/10.1021/jz300762c
80.
80. B. A. Collins, J. R. Tumbleston, and H. Ade, J. Phys. Chem. Lett. 2, 3135 (2011).
http://dx.doi.org/10.1021/jz2014902
81.
81. J. Labram, J. Kirkpatrick, D. Bradley, and T. Anthopoulos, Phys. Rev. B 84, 075344 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075344
82.
82. K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, Adv. Mater. 23, 766 (2011).
http://dx.doi.org/10.1002/adma.201003545
83.
83. N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, and M. L. Chabinyc, Adv. Energy Mater. 1, 82 (2011).
http://dx.doi.org/10.1002/aenm.201000023
84.
84. A. M. Nardes, A. L. Ayzner, S. R. Hammond, A. J. Ferguson, B. J. Schwartz, and N. Kopidakis, J. Phys. Chem. C 116, 7293 (2012).
http://dx.doi.org/10.1021/jp212390p
85.
85. J. Moon, C. Takacs, Y. Sun, and A. J. Heeger, Nano Lett. 11, 1036 (2011).
http://dx.doi.org/10.1021/nl200056p
86.
86. V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, ACS Appl. Mater. Interfaces 3, 3252 (2011).
http://dx.doi.org/10.1021/am200755m
87.
87. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, Adv. Mater. 22, 3293 (2010).
http://dx.doi.org/10.1002/adma.201000883
88.
88. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
89.
89. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
90.
90. P. P. Ewald, Ann. Phys. 369, 253 (1921).
http://dx.doi.org/10.1002/andp.19213690304
91.
91. P. Gibbon, and G. Sutmann, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes NIC Series Vol. 10, edited by J. Grotendorst, D. Marx, and A. Muramatsu (John von Neumann Institute for Computing, Julich, 2002), pp. 467506.
92.
92. C. Holm, in Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes NIC Series Vol. 23, edited by N. Attig, K. Binder, H. Grubmuller, and K. Kremer (John von Neumann Institute for Computing, Julich, 2004), pp. 195236.
93.
93. M. Frigo and S. Johnson, Proc. IEEE 93, 216 (2005).
http://dx.doi.org/10.1109/JPROC.2004.840301
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/2/10.1063/1.4812826
Loading
/content/aip/journal/jcp/139/2/10.1063/1.4812826
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/2/10.1063/1.4812826
2013-07-12
2014-11-24

Abstract

Numerical approaches can provide useful information about the microscopic processes underlying photocurrent generation in organic solar cells (OSCs). Among them, the Kinetic Monte Carlo (KMC) method is conceptually the simplest, but computationally the most intensive. A less demanding alternative is potentially represented by so-called Master Equation (ME) approaches, where the equations describing particle dynamics rely on the mean-field approximation and their solution is attained numerically, rather than stochastically. The description of charge separation dynamics, the treatment of electrostatic interactions and numerical stability are some of the key issues which have prevented the application of these methods to OSC modelling, despite of their successes in the study of charge transport in disordered system. Here we describe a three-dimensional ME approach to photocurrent generation in OSCs which attempts to deal with these issues. The reliability of the proposed method is tested against reference KMC simulations on bilayer heterojunction solar cells. Comparison of the current-voltage curves shows that the model well approximates the exact result for most devices. The largest deviations in current densities are mainly due to the adoption of the mean-field approximation for electrostatic interactions. The presence of deep traps, in devices characterized by strong energy disorder, may also affect result quality. Comparison of the simulation times reveals that the ME algorithm runs, on the average, one order of magnitude faster than KMC.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/2/1.4812826.html;jsessionid=7l6itqa3h1cqe.x-aip-live-02?itemId=/content/aip/journal/jcp/139/2/10.1063/1.4812826&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/2/10.1063/1.4812826
10.1063/1.4812826
SEARCH_EXPAND_ITEM