1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Thermodynamic analysis of critical conditions of polymer adsorption
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/20/10.1063/1.4833682
1.
1. P. DeGennes, Rep. Prog. Phys. 32, 187 (1969).
http://dx.doi.org/10.1088/0034-4885/32/1/304
2.
2. E. Broda and H. Mark, Z. Phys. Chem. Abt. A 180, 392 (1937).
3.
3. R. Simha, H. L. Frisch, and F. R. Eirich, J. Phys. Chem. 57, 584 (1953).
http://dx.doi.org/10.1021/j150507a011
4.
4. W. I. Higuchi, J. Phys. Chem. 65, 487 (1961).
http://dx.doi.org/10.1021/j100821a024
5.
5. A. Silberberg, J. Phys. Chem. 66, 1872 (1962).
http://dx.doi.org/10.1021/j100816a023
6.
6. E. A. DiMarzio and F. L. McCrackin, J. Chem. Phys. 43, 539 (1965).
http://dx.doi.org/10.1063/1.1696778
7.
7. S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965).
http://dx.doi.org/10.1088/0370-1328/85/4/301
8.
8. C. A. J. Hoeve, E. A. DiMarzio, and P. Peyser, J. Chem. Phys. 42, 2558 (1965).
http://dx.doi.org/10.1063/1.1696332
9.
9. R. J. Roe, Proc. Natl. Acad. Sci. U.S.A. 53, 50 (1965).
http://dx.doi.org/10.1073/pnas.53.1.50
10.
10. R. J. Rubin, J. Chem. Phys. 43, 2392 (1965).
http://dx.doi.org/10.1063/1.1697138
11.
11. P. Mark and S. Windwer, Macromolecules 7, 690 (1974).
http://dx.doi.org/10.1021/ma60041a028
12.
12. G. M. Torrie, K. M. Middlemiss, S. H. P. Bly, and S. G. Whittington, J. Chem. Phys. 65, 1867 (1976).
http://dx.doi.org/10.1063/1.433279
13.
13. Y. Lepine and A. Caille, Can. J. Phys. 56, 403 (1978).
http://dx.doi.org/10.1139/p78-052
14.
14. E. Eisenriegler, K. Kremer, and K. Binder, J. Chem. Phys. 77, 6296 (1982).
http://dx.doi.org/10.1063/1.443835
15.
15. H. Meirovitch and S. Livne, J. Chem. Phys. 88, 4507 (1988).
http://dx.doi.org/10.1063/1.453758
16.
16. T. M. Birshtein, Macromolecules 12, 715 (1979).
http://dx.doi.org/10.1021/ma60070a036
17.
17. T. M. Birshtein, Macromolecules 16, 45 (1983).
http://dx.doi.org/10.1021/ma00235a009
18.
18. K. De'Bell and T. Lookman, Rev. Mod. Phys. 65, 87 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.87
19.
19. E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore, 1993).
20.
20. A. A. Gorbunov and A. M. Skvortsov, Adv. Colloid Interface Sci. 62, 31 (1995).
http://dx.doi.org/10.1016/0001-8686(95)00270-Z
21.
21. L. I. Klushin, A. A. Polotsky, H. P. Hsu, D. A. Markelov, K. Binder, and A. M. Skvortsov, Phys. Rev. E 87, 022604 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.022604
22.
22. S. Metzger, M. Muller, K. Binder, and J. Baschnagel, Macromol. Theory Simul. 11, 985 (2002).
http://dx.doi.org/10.1002/1521-3919(200211)11:9<985::AID-MATS985>3.0.CO;2-U
23.
23. R. Descas, J. U. Sommer, and A. Blumen, J. Chem. Phys. 120, 8831 (2004).
http://dx.doi.org/10.1063/1.1691393
24.
24. A. M. Skvortsov and A. A. Gorbunov, J. Chromatogr. A 358, 77 (1986).
http://dx.doi.org/10.1016/S0021-9673(01)90317-6
25.
25. Y. C. Gong and Y. M. Wang, Macromolecules 35, 7492 (2002).
http://dx.doi.org/10.1021/ma0205461
26.
26. Y. T. Zhu, J. D. Ziebarth, and Y. M. Wang, Polymer 52, 3219 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.04.059
27.
27. H. J. Philipsen, B. Klumperman, A. M. VanHerk, and A. L. German, J. Chromatogr., A 727, 13 (1996).
http://dx.doi.org/10.1016/0021-9673(95)01074-2
28.
28. Y. Brun and J. Liq, Chromatogr. Relat. Technol. 22, 3027 (1999).
http://dx.doi.org/10.1081/JLC-100102075
29.
29. T. Macko and D. Hunkeler, in Liquid Chromatography/FTIR Microscopy/Microwave Assisted Synthesis, edited by R. Bhargava (Springer, Berlin, 2003), p. 61.
30.
30. C. J. Rasmussen, A. Vishnyakov, and A. V. Neimark, J. Chem. Phys. 135, 214109 (2011).
http://dx.doi.org/10.1063/1.3657438
31.
31. C. J. Rasmussen, A. Vishnyakov, and A. V. Neimark, Adsorption 17, 265 (2011).
http://dx.doi.org/10.1007/s10450-011-9325-7
32.
32. J. I. Siepmann and D. Frenkel, Mol. Phys. 75, 59 (1992).
http://dx.doi.org/10.1080/00268979200100061
33.
33. A. V. Neimark and A. Vishnyakov, Phys. Rev. E 62, 4611 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.4611
34.
34. A. V. Neimark and A. Vishnyakov, J. Chem. Phys. 122, 234108 (2005).
http://dx.doi.org/10.1063/1.1931663
35.
35. P. Grassberger, J. Phys. A 38, 323 (2005).
http://dx.doi.org/10.1088/0305-4470/38/2/003
36.
36. R. Hegger and P. Grassberger, J. Phys. A 27, 4069 (1994).
http://dx.doi.org/10.1088/0305-4470/27/12/015
37.
37. E. J. Janse van Rensburg and A. R. Rechnitzer, J. Phys. A 37, 6875 (2004).
http://dx.doi.org/10.1088/0305-4470/37/27/002
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4833682 for the content of the three sections: A, B, and C. Section A outlines the computational and simulation methods utilized by the authors and provides additional information on the chain free energy. Section B provides background about the geometrical scaling methods mentioned in this Communication. Section C offers an alternative consideration of the scaling behavior at the CPA. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/20/10.1063/1.4833682
Loading
/content/aip/journal/jcp/139/20/10.1063/1.4833682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/20/10.1063/1.4833682
2013-11-26
2014-07-23

Abstract

Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of “infinite” chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/20/1.4833682.html;jsessionid=1vllw4hjnhiva.x-aip-live-02?itemId=/content/aip/journal/jcp/139/20/10.1063/1.4833682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Thermodynamic analysis of critical conditions of polymer adsorption
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/20/10.1063/1.4833682
10.1063/1.4833682
SEARCH_EXPAND_ITEM