Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. M. Anderson, F. S. Klein, and F. Kaufman, J. Chem. Phys. 83, 1648 (1985).
2. M. R. Wiegell, N. W. Larsen, T. Pedersen, and H. Egsgaard, Int. J. Chem. Kinet. 29, 745 (1997).<745::AID-KIN3>3.0.CO;2-M
3. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Schinke, C. Janssen, and D. Krankowsky, J. Chem. Phys. 119, 4700 (2003).
4. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Siebert, R. Schinke, and N. Halberstadt, J. Chem. Phys. 118, 610 (2003).
5. S. Y. Lin and H. Guo, J. Phys. Chem. A 110, 5305 (2006).
6. Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo, and D. H. Zhang, Proc. Natl. Acad. Sci. U.S.A. 107, 555 (2010).
7. M. H. Thiemens, Science 293, 226 (2001).
8. M. H. Thiemens, Annu. Rev. Earth Planet. Sci. 34, 217 (2006).
9. K. Mauersberger, D. Krankowsky, C. Janssen, and R. Schinke, Adv. At., Mol., Opt. Phys. 50, 1 (2005).
10. Y. Q. Gao and R. A. Marcus, Science 293, 259 (2001).
11. R. Siebert, R. Schinke, and M. Bittererova, Phys. Chem. Chem. Phys. 3, 1795 (2001).
12. R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, and S. C. J. Farantos, J. Chem. Phys. 116, 9749 (2002).
13. D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lessard, and R. J. Schinke, J. Chem. Phys. 118, 6298 (2003).
14. F. Holka, P. G. Szalay, T. Müller, and Vl. G. Tyuterev, J. Phys. Chem. A 114, 9927 (2010).
15. R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011).
16. D. Xie, H. Guo, and K. A. Peterson, J. Chem. Phys. 112, 8378 (2000).
17. T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 134, 034113 (2011).
18. T. Shiozaki and H.-J. Werner, Mol. Phys. 111, 607 (2013).
19. H.-J. Werner, P. J. Knowles, G. Knizia et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see
20. D. Feller, K. A. Peterson, and D. A. Dixon, J. Chem. Phys. 129, 204105 (2008).
21. B. Ruscic, private communication of ATcT result based on version 1.110 of the Core (Argonne) Thermochemical Network (17 May, 2010).
22. Y. G. Khait, W. Jiang, and M. R. Hoffmann, Chem. Phys. Lett. 493, 1 (2010).
23. K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
24. J. D. Watts and R. J. Bartlett, J. Chem. Phys. 108, 2511 (1998).
25. R. Dawes, A. W. Jasper, C. Tao, C. Richmond, C. Mukarakate, S. H. Kable, and S. A. Reid, J. Phys. Chem. Lett. 1, 641 (2010).
26. M. P. Deskevich, D. J. Nesbitt, and H.-J. Werner, J. Chem. Phys. 120, 7281 (2004).
27. M. Ayouz and D. Babikov, J. Chem. Phys. 138, 164311 (2013).
28. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, F. Holka, and P. G. Szalay, J. Chem. Phys. 139, 134307 (2013).
29. A. Barbe, S. Mikhailenko, E. Starikova, M.-R. DeBacker, V. G. Tyuterev, D. Mondelain, S. Kassi, A. Campargue, C. Janssen, S. Tashkun, R. Kochanov, R. Gamache, and J. Orphal, J. Quant. Spectrosc. Radiat. Transf. 130, 172 (2013).
30. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown et al., J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013).
31. H.-J. Werner, T. B. Adler, G. Knizia, and F. R. Manby, in Recent Progress in Coupled-Cluster Methods, edited by P. Cársky, J. Paldus, and J. Pittner (Springer, 2010).
32.See supplementary material at for more details of electronic structure calculations, vibrational levels and QSM and scattering calculations. [Supplementary Material]
33. D. Feller and K. A. Peterson, J. Chem. Phys. 139, 084110 (2013).
34. R. Dawes, X.-G. Wang, A. W. Jasper, and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
35. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Phys. Chem. A 113, 4709 (2009).
36. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Chem. Phys. 128, 084107 (2008).
37. M. Lepers, B. Bussery-Honvault, and O. Dulieu, J. Chem. Phys. 137, 234305 (2012).
38. L. Bytautas, N. Matsunaga, and K. Ruedenberg, J. Chem. Phys. 132, 074307 (2010).
39. Vl. G. Tyuterev, S. Tashkun, P. Jensen, and A. Barbe, J. Mol. Spectrosc. 198, 57 (1999).
40. Vl. G. Tyuterev, S. Tashkun, D. W. Schwenke, P. Jensen, T. Cours, A. Barbe, and M. Jacon, Chem. Phys. Lett. 316, 271 (2000).
41.RTR is a package of programs to compute Rovibrational levels and wavefunctions of TRiatomic molecules, X.-G. Wang and T. Carrington, Jr.
42. S. Y. Grebenshchikov, R. Schinke, P. Fleurat-Lessard, and M. Joyeux, J. Chem. Phys. 119, 6512 (2003).
43. A. L. Van Wyngarden, K. A. Mar, K. A. Boering, J. J. Lin, Y. T. Lee, S.-Y. Lin, H. Guo, and G. Lendvay, J. Am. Chem. Soc. 129, 2866 (2007).

Data & Media loading...


Article metrics loading...



We report a new full-dimensional and global potential energy surface (PES) for the O + O → O ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys.135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-range electrostatic model of Lepers et al. [J. Chem. Phys.137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd