1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: An accurate global potential energy surface for the ground electronic state of ozone
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/20/10.1063/1.4837175
1.
1. S. M. Anderson, F. S. Klein, and F. Kaufman, J. Chem. Phys. 83, 1648 (1985).
http://dx.doi.org/10.1063/1.449402
2.
2. M. R. Wiegell, N. W. Larsen, T. Pedersen, and H. Egsgaard, Int. J. Chem. Kinet. 29, 745 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4601(1997)29:10<745::AID-KIN3>3.0.CO;2-M
3.
3. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Schinke, C. Janssen, and D. Krankowsky, J. Chem. Phys. 119, 4700 (2003).
http://dx.doi.org/10.1063/1.1595091
4.
4. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Siebert, R. Schinke, and N. Halberstadt, J. Chem. Phys. 118, 610 (2003).
http://dx.doi.org/10.1063/1.1525255
5.
5. S. Y. Lin and H. Guo, J. Phys. Chem. A 110, 5305 (2006).
http://dx.doi.org/10.1021/jp0556299
6.
6. Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo, and D. H. Zhang, Proc. Natl. Acad. Sci. U.S.A. 107, 555 (2010).
http://dx.doi.org/10.1073/pnas.0911356107
7.
7. M. H. Thiemens, Science 293, 226 (2001).
http://dx.doi.org/10.1126/science.1063648
8.
8. M. H. Thiemens, Annu. Rev. Earth Planet. Sci. 34, 217 (2006).
http://dx.doi.org/10.1146/annurev.earth.34.031405.125026
9.
9. K. Mauersberger, D. Krankowsky, C. Janssen, and R. Schinke, Adv. At., Mol., Opt. Phys. 50, 1 (2005).
http://dx.doi.org/10.1016/S1049-250X(05)80006-0
10.
10. Y. Q. Gao and R. A. Marcus, Science 293, 259 (2001).
http://dx.doi.org/10.1126/science.1058528
11.
11. R. Siebert, R. Schinke, and M. Bittererova, Phys. Chem. Chem. Phys. 3, 1795 (2001).
http://dx.doi.org/10.1039/b102830h
12.
12. R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, and S. C. J. Farantos, J. Chem. Phys. 116, 9749 (2002).
http://dx.doi.org/10.1063/1.1473664
13.
13. D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lessard, and R. J. Schinke, J. Chem. Phys. 118, 6298 (2003).
http://dx.doi.org/10.1063/1.1557936
14.
14. F. Holka, P. G. Szalay, T. Müller, and Vl. G. Tyuterev, J. Phys. Chem. A 114, 9927 (2010).
http://dx.doi.org/10.1021/jp104182q
15.
15. R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011).
http://dx.doi.org/10.1063/1.3632055
16.
16. D. Xie, H. Guo, and K. A. Peterson, J. Chem. Phys. 112, 8378 (2000).
http://dx.doi.org/10.1063/1.481442
17.
17. T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 134, 034113 (2011).
http://dx.doi.org/10.1063/1.3528720
18.
18. T. Shiozaki and H.-J. Werner, Mol. Phys. 111, 607 (2013).
http://dx.doi.org/10.1080/00268976.2013.779393
19.
19. H.-J. Werner, P. J. Knowles, G. Knizia et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
20.
20. D. Feller, K. A. Peterson, and D. A. Dixon, J. Chem. Phys. 129, 204105 (2008).
http://dx.doi.org/10.1063/1.3008061
21.
21. B. Ruscic, private communication of ATcT result based on version 1.110 of the Core (Argonne) Thermochemical Network (17 May, 2010).
22.
22. Y. G. Khait, W. Jiang, and M. R. Hoffmann, Chem. Phys. Lett. 493, 1 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.04.060
23.
23. K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
24.
24. J. D. Watts and R. J. Bartlett, J. Chem. Phys. 108, 2511 (1998).
http://dx.doi.org/10.1063/1.475634
25.
25. R. Dawes, A. W. Jasper, C. Tao, C. Richmond, C. Mukarakate, S. H. Kable, and S. A. Reid, J. Phys. Chem. Lett. 1, 641 (2010).
http://dx.doi.org/10.1021/jz900380a
26.
26. M. P. Deskevich, D. J. Nesbitt, and H.-J. Werner, J. Chem. Phys. 120, 7281 (2004).
http://dx.doi.org/10.1063/1.1667468
27.
27. M. Ayouz and D. Babikov, J. Chem. Phys. 138, 164311 (2013).
http://dx.doi.org/10.1063/1.4799915
28.
28. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, F. Holka, and P. G. Szalay, J. Chem. Phys. 139, 134307 (2013).
http://dx.doi.org/10.1063/1.4821638
29.
29. A. Barbe, S. Mikhailenko, E. Starikova, M.-R. DeBacker, V. G. Tyuterev, D. Mondelain, S. Kassi, A. Campargue, C. Janssen, S. Tashkun, R. Kochanov, R. Gamache, and J. Orphal, J. Quant. Spectrosc. Radiat. Transf. 130, 172 (2013).
http://dx.doi.org/10.1016/j.jqsrt.2013.06.007
30.
30. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown et al., J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013).
http://dx.doi.org/10.1016/j.jqsrt.2013.07.002
31.
31. H.-J. Werner, T. B. Adler, G. Knizia, and F. R. Manby, in Recent Progress in Coupled-Cluster Methods, edited by P. Cársky, J. Paldus, and J. Pittner (Springer, 2010).
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4837175 for more details of electronic structure calculations, vibrational levels and QSM and scattering calculations. [Supplementary Material]
33.
33. D. Feller and K. A. Peterson, J. Chem. Phys. 139, 084110 (2013).
http://dx.doi.org/10.1063/1.4819125
34.
34. R. Dawes, X.-G. Wang, A. W. Jasper, and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
http://dx.doi.org/10.1063/1.3494542
35.
35. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Phys. Chem. A 113, 4709 (2009).
http://dx.doi.org/10.1021/jp900409r
36.
36. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Chem. Phys. 128, 084107 (2008).
http://dx.doi.org/10.1063/1.2831790
37.
37. M. Lepers, B. Bussery-Honvault, and O. Dulieu, J. Chem. Phys. 137, 234305 (2012).
http://dx.doi.org/10.1063/1.4770054
38.
38. L. Bytautas, N. Matsunaga, and K. Ruedenberg, J. Chem. Phys. 132, 074307 (2010).
http://dx.doi.org/10.1063/1.3298376
39.
39. Vl. G. Tyuterev, S. Tashkun, P. Jensen, and A. Barbe, J. Mol. Spectrosc. 198, 57 (1999).
http://dx.doi.org/10.1006/jmsp.1999.7928
40.
40. Vl. G. Tyuterev, S. Tashkun, D. W. Schwenke, P. Jensen, T. Cours, A. Barbe, and M. Jacon, Chem. Phys. Lett. 316, 271 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01228-2
41.
41.RTR is a package of programs to compute Rovibrational levels and wavefunctions of TRiatomic molecules, X.-G. Wang and T. Carrington, Jr.
42.
42. S. Y. Grebenshchikov, R. Schinke, P. Fleurat-Lessard, and M. Joyeux, J. Chem. Phys. 119, 6512 (2003).
http://dx.doi.org/10.1063/1.1603737
43.
43. A. L. Van Wyngarden, K. A. Mar, K. A. Boering, J. J. Lin, Y. T. Lee, S.-Y. Lin, H. Guo, and G. Lendvay, J. Am. Chem. Soc. 129, 2866 (2007).
http://dx.doi.org/10.1021/ja0668163
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/20/10.1063/1.4837175
Loading
/content/aip/journal/jcp/139/20/10.1063/1.4837175
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/20/10.1063/1.4837175
2013-11-27
2014-09-30

Abstract

We report a new full-dimensional and global potential energy surface (PES) for the O + O → O ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys.135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-range electrostatic model of Lepers et al. [J. Chem. Phys.137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/20/1.4837175.html;jsessionid=8fusto49q2h7q.x-aip-live-06?itemId=/content/aip/journal/jcp/139/20/10.1063/1.4837175&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An accurate global potential energy surface for the ground electronic state of ozone
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/20/10.1063/1.4837175
10.1063/1.4837175
SEARCH_EXPAND_ITEM