Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/21/10.1063/1.4837795
1.
1. J. C. Tully, J. Chem. Phys. 93(2), 10611071 (1990).
http://dx.doi.org/10.1063/1.459170
2.
2. A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, J. Phys. Chem. B 114, 1231912332 (2010).
http://dx.doi.org/10.1021/jp1051547
3.
3. G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007).
http://dx.doi.org/10.1063/1.2715585
4.
4. S. Fernandez-Alberti, V. D. Kleiman, S. Tretiak, and A. E. Roitberg, J. Phys. Chem. A 113, 75357542 (2009).
http://dx.doi.org/10.1021/jp900904q
5.
5. C. C. Martens and J. Y. Fang, J. Chem. Phys. 106, 4918 (1997).
http://dx.doi.org/10.1063/1.473541
6.
6. A. Donoso and C. C. Martens, J. Phys. Chem. A 102, 4291 (1998).
http://dx.doi.org/10.1021/jp980219o
7.
7. R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
http://dx.doi.org/10.1063/1.478811
8.
8. S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. 112, 6543 (2000).
http://dx.doi.org/10.1063/1.481225
9.
9. O. V. Prezhdo and V. V. Kisil, Phys. Rev. A 56, 162 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.162
10.
10. D. A. Micha and B. Thorndyke, Int. J. Quantum Chem. 90, 759 (2002).
http://dx.doi.org/10.1002/qua.945
11.
11. B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J. Chem. Phys. 104, 59425955 (1996).
http://dx.doi.org/10.1063/1.471326
12.
12. U. Müller and G. Stock, J. Chem. Phys. 107, 62306245 (1997).
http://dx.doi.org/10.1063/1.474288
13.
13. W. Xie, S. Bai, L. Zhu, and Q. Shi, J. Phys. Chem. A 117, 61966204 (2013).
http://dx.doi.org/10.1021/jp400462f
14.
14. A. Kelly and T. E. Markland, J. Chem. Phys. 139, 014104 (2013).
http://dx.doi.org/10.1063/1.4812355
15.
15. L. J. Wang and D. Beljonne, J. Chem. Phys. 139, 064316 (2013).
http://dx.doi.org/10.1063/1.4817856
16.
16. P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102 (2005).
http://dx.doi.org/10.1063/1.1856460
17.
17. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008).
http://dx.doi.org/10.1063/1.2955564
18.
18. B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012).
http://dx.doi.org/10.1063/1.4733675
19.
19. J. E. Subotnik, W. Ouyang, and B. R. Landry, J. Chem. Phys. 139, 214107 (2013).
http://dx.doi.org/10.1063/1.4829856
20.
20. N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995).
http://dx.doi.org/10.1063/1.469508
21.
21. N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4611 (1995).
http://dx.doi.org/10.1063/1.469509
22.
22. Q. Shi and E. Geva, J. Chem. Phys. 119, 12063 (2003).
http://dx.doi.org/10.1063/1.1624830
23.
23. A. J. Leggett, Phys. Rev. B 30, 12081218 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.1208
24.
24. A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83, 44914503 (1985).
http://dx.doi.org/10.1063/1.449017
25.
25. B. R. Landry and J. E. Subotnik, J. Chem. Phys. 135, 191101 (2011).
http://dx.doi.org/10.1063/1.3663870
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/21/10.1063/1.4837795
Loading
/content/aip/journal/jcp/139/21/10.1063/1.4837795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/21/10.1063/1.4837795
2013-12-04
2016-12-08

Abstract

In a recent paper, we presented a road map for how Tully's fewest switches surface hopping (FSSH) algorithm can be derived, under certain circumstances, from the mixed quantum-classical Liouville equation. In this communication, we now demonstrate how this new interpretation of surface hopping can yield significantly enhanced results for electronic properties in nonadiabatic calculations. Specifically, we calculate diabatic populations for the spin-boson problem using FSSH trajectories. We show that, for some Hamiltonians, without changing the FSSH algorithm at all but rather simply reinterpreting the ensemble of surface hopping trajectories, we recover excellent results and remove any and all ambiguity about the initial condition problem.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/21/1.4837795.html;jsessionid=cgtWQEearNyw_rouP2K5eDyj.x-aip-live-03?itemId=/content/aip/journal/jcp/139/21/10.1063/1.4837795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/21/10.1063/1.4837795&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/21/10.1063/1.4837795'
Right1,Right2,Right3,