Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996).
2. J. Reho, C. Callegari, J. Higgins, W. E. Ernst, K. K. Lehmann, and G. Scoles, Faraday Discuss. 108, 161 (1997).
3. A. Nakayama and K. Yamashita, J. Chem. Phys. 114, 780 (2001).
4. O. Bünermann, M. Mudrich, M. Weidemüller, and F. Stienkemeier, J. Chem. Phys. 121, 8880 (2004).
5. O. Bünermann, G. Droppelmann, A. Hernando, R. Mayol, and F. Stienkemeier, J. Phys. Chem. A 111, 12684 (2007).
6. E. Loginov, C. Callegari, F. Ancilotto, and M. Drabbels, J. Phys. Chem. A 115, 6779 (2011).
7. F. Stienkemeier, J. Higgins, W. E. Ernst, and G. Scoles, Phys. Rev. Lett. 74, 3592 (1995).
8. F. Dalfovo, Z. Phys. D: At., Mol. Clusters 29, 61 (1994).
9. F. Ancilotto, E. Cheng, M. W. Cole, and F. Toigo, Z. Phys. B 98, 323 (1995).
10. F. R. Brühl, R. A. Trasca, and W. E. Ernst, J. Chem. Phys. 115, 10220 (2001).
11. G. Auböck, J. Nagl, C. Callegari, and W. E. Ernst, Phys. Rev. Lett. 101, 035301 (2008).
12. A. Hernando, M. Barranco, M. Pi, E. Loginov, M. Langlet, and M. Drabbels, Phys. Chem. Chem. Phys. 14, 3996 (2012).
13. F. Lackner, G. Krois, M. Theisen, M. Koch, and W. E. Ernst, Phys. Chem. Chem. Phys. 13, 18781 (2011).
14. F. Lackner, G. Krois, and W. E. Ernst, Mol. Phys. 111, 2118 (2013).
15. L. Fechner, B. Grüner, A. Sieg, C. Callegari, F. Ancilotto, F. Stienkemeier, and M. Mudrich, Phys. Chem. Chem. Phys. 14, 3843 (2012).
16. E. Loginov, Ph.D. thesis, École polytechnique fédérale de Lausanne EPFL, 2008.
17. A. G. Suits and O. S. Vasyutinskii, Chem. Rev. 108, 3706 (2008).
18. R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
19. U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553 (1973).
20. J. A. Beswick, M. Glass-Maujean, and O. Roncero, J. Chem. Phys. 96, 7514 (1992).
21. L. Siebbeles, M. Glass-Maujean, O. Vasyutinskii, J. A. Beswick, and O. Roncero, J. Chem. Phys. 100, 3610 (1994).
22. G. E. Douberly, P. L. Stiles, R. E. Miller, R. Schmied, and K. K. Lehmann, J. Phys. Chem. A 114, 3391 (2010).
23. A. Hernando, A. Masson, M. Briant, J. Mestdagh, M. Gaveau, and N. Halberstadt, J. Chem. Phys. 137, 184311 (2012).
24. D. Dell’Angelo, G. Guillon, and A. Viel, J. Chem. Phys. 136, 114308 (2012).
25. T. P. Rakitzis, S. A. Kandel, A. J. Alexander, Z. H. Kim, and R. Zare, J. Chem. Phys. 110, 3351 (1999).
26. T. P. Rakitzis, S. A. Kandel, A. J. Alexander, Z. H. Kim, and R. N. Zare, Science 281, 1346 (1998).

Data & Media loading...


Article metrics loading...



The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster ( = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He), in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd