Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev. 108, 845 (2008);
1.Metal Nanoparticles and Nanoalloys, edited by R. L. Johnston and J. P. Wilcoxon (Elsevier, 2012);
1.F. Calvo, A. Fortunelli, F. Negreiros, and D. J. Wales, J. Chem. Phys. 139, 111102 (2013).
2. G. Meng et al., Science 327, 560 (2010);
2.D. Frenkel and D. J. Wales, Nature Mater. 10, 410 (2011);
2.S. Hormoz and M. P. Brenner, Proc. Natl. Acad. Sci. U.S.A. 108, 5193 (2011).
3. J. Jellinek and E. Krissinel, Theory of Atomic and Molecular Clusters (Springer, 1999), pp. 277308.
4. Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987).
5. D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
6. L. O. Paz-Borbón et al., Phys. Chem. Chem. Phys. 9, 5202 (2007);
6.L. O. Paz-Borbón et al., J. Chem. Phys. 128, 134517 (2008);
6.G. G. Rondina and J. L. F. Da Silva, J. Chem. Inf. Model. 53, 2282 (2013).
7. D. Bochicchio and R. Ferrando, Nano Lett. 10, 4211 (2010);
7.D. Bochicchio and R. Ferrando, Phys. Rev. B 87, 165435 (2013).
8. B. W. Kernighan and S. Lin, Bell Syst. Tech. J. 49, 291 (1970).
9. X. Lai, R. Xu, and W. Huang, J. Chem. Phys. 135, 164109 (2011).
10. M. Sicher, S. Mohr, and S. Goedecker, J. Chem. Phys. 134, 044106 (2011).
11. C. Fiduccia and R. M. Mattheyses, in Proceedings of the Nineteenth Design Automation Conference (IEEE, 1982), p. 175.
12. D. J. Wales, GMIN: A program for basin-hopping global optimisation, basin-sampling, and parallel tempering; see
13. J. P. K. Doye and L. Meyer, Phys. Rev. Lett. 95, 063401 (2005).
14. D. J. Wales et al., The Cambridge Cluster Database, 2001, see

Data & Media loading...


Article metrics loading...



We analyse the combinatorial aspect of global optimisation for multicomponent systems, which involves searching for the optimal chemical ordering by permuting particles corresponding to different species. The overall composition is presumed fixed, and the geometry is relaxed after each permutation in order to relieve local strain. From ideas used to solve graph partitioning problems we devise a deterministic search scheme that outperforms (by orders of magnitude) conventional and self-guided basin-hopping global optimisation. The search is guided by the energy gain from either swapping particles and ) or changing the identity of particles ). These quantities are derived from the underlying (arbitrary) energy function, hence not constituting external bias, and for site-separable force fields each Δ can be approximated simply and efficiently. In our self-guided variant of basin-hopping, particles are weighted by an approximate Δ when randomly selected for an exchange, yielding a significant improvement for segregated multicomponent systems with modest particle size mismatch.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd