Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/23/10.1063/1.4840675
1.
1. S. J. Peters and G. E. Ewing, J. Phys. Chem. B 101, 10880 (1997).
http://dx.doi.org/10.1021/jp972810b
2.
2. S. J. Peters and G. E. Ewing, Langmuir 13, 6345 (1997).
http://dx.doi.org/10.1021/la970629o
3.
3. M. C. Foster and G. E. Ewing, J. Chem. Phys. 112, 6817 (2000).
http://dx.doi.org/10.1063/1.481256
4.
4. S. Fölsch and M. Henzler, Surf. Sci. 264, 65 (1992).
http://dx.doi.org/10.1016/0039-6028(92)90165-3
5.
5. J. Hu, X. Xiao, D. F. Ogletree, and M. Salmeron, Science 268, 267 (1995).
http://dx.doi.org/10.1126/science.268.5208.267
6.
6. J. Hu, X. Xiao, and M. Salmeron, Appl. Phys. Lett. 67, 476 (1995).
http://dx.doi.org/10.1063/1.114541
7.
7. Q. Dai, J. Hu, and M. Salmeron, J. Phys. Chem. B 101, 1994 (1997).
http://dx.doi.org/10.1021/jp9625772
8.
8. H. Shindo, M. Ohashi, K. Baba, and A. Seo, Surf. Sci. 357, 111 (1996).
http://dx.doi.org/10.1016/0039-6028(96)00069-6
9.
9. H. Shindo, M. Ohashi, O. Tateishi, and A. Seo, J. Chem. Soc., Faraday Trans. 93, 1169 (1997).
http://dx.doi.org/10.1039/a606256c
10.
10. H. Shindo and M. Ohashi, Appl. Phys. A 66, S487 (1998).
http://dx.doi.org/10.1007/s003390051188
11.
11. M. Luna, F. Rieutord, N. A. Melman, Q. Dai, and M. Salmeron, J. Phys. Chem. A 102, 6793 (1998).
http://dx.doi.org/10.1021/jp9820875
12.
12. S. Garcia-Manyes, A. Verdaguer, P. Gorostiza, and F. Sanz, J. Chem. Phys. 120, 2963 (2004).
http://dx.doi.org/10.1063/1.1628223
13.
13. S. Ghosal, A. Verdaguer, J. C. Hemminger, and M. Salmeron, J. Phys. Chem. A 109, 4744 (2005).
http://dx.doi.org/10.1021/jp046250+
14.
14. A. Verdaguer, G. M. Sacha, M. Luna, D. F. Ogletree, and M. Salmeron, J. Chem. Phys. 123, 124703 (2005).
http://dx.doi.org/10.1063/1.1996568
15.
15. A. Verdaguer, J. J. Segura, J. Fraxedas, H. Bluhm, and M. Salmeron, J. Phys. Chem. C 112, 16898 (2008).
http://dx.doi.org/10.1021/jp805444v
16.
16. S. Yamabe, H. Kouno, and K. Matsumura, J. Phys. Chem. B 104, 10242 (2000).
http://dx.doi.org/10.1021/jp993222w
17.
17. R. N. Barnett and U. Landman, J. Phys. Chem. 100, 13950 (1996).
http://dx.doi.org/10.1021/jp9605764
18.
18. P. Jungwirth, J. Phys. Chem. A 104, 145 (2000).
http://dx.doi.org/10.1021/jp993010z
19.
19. H. Ohtaki, N. Fukushima, E. Hayakawa, and I. Okada, Pure Appl. Chem. 60, 1321 (1988).
http://dx.doi.org/10.1351/pac198860081321
20.
20. Y. Yang, S. Meng, L. F. Xu, E. G. Wang, and S. Gao, Phys. Rev. E 72, 012602 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.012602
21.
21. R. Bahadur, L. M. Russell, S. Alavi, S. T. Martin, and P. R. Buseck, J. Chem. Phys. 124, 154713 (2006).
http://dx.doi.org/10.1063/1.2185091
22.
22. A. Y. Zasetsky, J. J. Sloan, and I. M. Svishchev, J. Phys. Chem. A 112, 3114 (2008).
http://dx.doi.org/10.1021/jp709754j
23.
23. L. Liu, M. Krack, and A. Michaelides, J. Am. Chem. Soc. 130, 8572 (2008).
http://dx.doi.org/10.1021/ja8014296
24.
24. L.-M. Liu, M. Krack, and A. Michaelides, J. Chem. Phys. 130, 234702 (2009).
http://dx.doi.org/10.1063/1.3152845
25.
25. L.-M. Liu, A. Laio, and A. Michaelides, Phys. Chem. Chem. Phys. 13, 13162 (2011).
http://dx.doi.org/10.1039/c1cp21077g
26.
26. E. Stöckelmann and R. Hentschke, J. Chem. Phys. 110, 12097 (1999).
http://dx.doi.org/10.1063/1.479145
27.
27. B. Li, A. Michaelides, and M. Scheffler, Phys. Rev. B 76, 075401 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075401
28.
28. B. Li, A. Michaelides, and M. Scheffler, Surf. Sci. 602, L135 (2008).
http://dx.doi.org/10.1016/j.susc.2008.09.039
29.
29. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/074203
30.
30. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
31.
31. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
32.
32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
http://dx.doi.org/10.1103/PhysRevLett.77.3865
32.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
33.
33. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
34.
34. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
35.
35. B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
http://dx.doi.org/10.1063/1.2790009
36.
36. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
37.
37. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
38.
38. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
39.
39. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4840675 for results of tests of various force fields for water and NaCl, adsorption energies usng the optB86b-vdW functional, and additional structures of adsorbed water. [Supplementary Material]
41.
41. T. J. Lawton, J. Carrasco, A. E. Baber, A. Michaelides, and E. C. H. Sykes, Phys. Rev. Lett. 107, 256101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.256101
42.
42. J. Carrasco, J. Klimeš, and A. Michaelides, J. Chem. Phys. 138, 024708 (2013).
http://dx.doi.org/10.1063/1.4773901
43.
43. F. Hanke, M. S. Dyer, J. Björk, and M. Persson, J. Phys.: Condens. Matter 24, 424217 (2012).
http://dx.doi.org/10.1088/0953-8984/24/42/424217
44.
44. M. Forster, R. Raval, J. Carrasco, A. Michaelides, and A. Hodgson, Chem. Sci. 3, 93 (2012).
http://dx.doi.org/10.1039/c1sc00355k
45.
45. E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001); online at link.springer.com/article/10.1007/s008940100045.
http://dx.doi.org/10.1007/s008940100045
46.
46. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
47.
47. J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
48.
48. E. J. Sorin and V. S. Pande, Biophys. J. 88, 2472 (2005).
http://dx.doi.org/10.1529/biophysj.104.051938
49.
49. W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985).
http://dx.doi.org/10.1080/00268978500103111
50.
50. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
51.
51. D. J. Wales, Energy Landscapes: With Applications to Clusters, Biomolecules, and Glasses (Cambridge University Press, Cambridge, UK, 2003).
52.
52. C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).
http://dx.doi.org/10.1088/0953-8984/23/5/053201
53.
53.Overall we have performed full geometry optimisations using DFT for over 500 structures containing around 200 atoms.
54.
54. C. Ignatius, Master's thesis, University College London, 2010.
55.
55. J. M. Park, J. H. Cho, and K. S. Kim, Phys. Rev. B 69, 233403 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.233403
56.
56. P. Cabrera-Sanfelix, A. Arnau, G. R. Darling, and D. Sanchez-Portal, J. Phys. Chem. B 110, 24559 (2006).
http://dx.doi.org/10.1021/jp062462q
57.
57. Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B 74, 245409 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245409
58.
58. P. Cabrera-Sanfelix and G. R. Darling, J. Phys. Chem. C 111, 18258 (2007).
http://dx.doi.org/10.1021/jp076241b
59.
59. B. Ahlswede and K. Jug, Surf. Sci. 439, 86 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00739-6
60.
60. B. Li, Ph.D. thesis, Technical University of Berlin, 2009, see http://www.chem.ucl.ac.uk/ice/publications.html/libo_thesis.pdf.
61.
61. M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. 77, 703 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.703
62.
62. S. Meng, E. G. Wang, and S. Gao, Phys. Rev. B 69, 195404 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.195404
63.
63. D. Donadio, L. M. Ghiringhelli, and L. Delle Site, J. Am. Chem. Soc. 134, 19217 (2012).
http://dx.doi.org/10.1021/ja308899g
64.
64.Another reason for not observing favorable release of the ion from the kink might be the structural model we have chosen. On the kink structure the water molecules can form clusters in the corners between the terraces. The adsorption in such clusters seems to be quite strong as can be inferred from Figure 3. Between 12 and 18 water molecules the adsorption energy on the kink is almost constant while there is a progressive loss on the step. Thus it can be expected once the space between the steps on the kinks are full of water clusters, the adsorption of subsequent water molecules will be less stabilized and the creation of the defects more favored. A model of the surface which would not be affected by the adsorption around corner sites could lead to change in the results. For this, however, either a very large periodic cell would have to be used or a cluster model.
65.
65. X. Hu, J. Carrasco, J. Klimeš, and A. Michaelides, Phys. Chem. Chem. Phys. 13, 12447 (2011).
http://dx.doi.org/10.1039/c1cp20846b
66.
66.Even for the defect sites the O–H bond length expands only by up to ∼0.03 Å. Moreover, we considered the “Cl near” defect on the step with 16 water molecules and moved one hydrogen from the water molecule located in the vacancy to the Cl ion. The structure with dissociated water is at least 3.5 eV higher in energy making the dissociation unfavorable.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/23/10.1063/1.4840675
Loading
/content/aip/journal/jcp/139/23/10.1063/1.4840675
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/23/10.1063/1.4840675
2013-12-16
2016-10-01

Abstract

The dissolution of NaCl in water is one of the most common everyday processes, yet it remains poorly understood at the molecular level. Here we report the results of an extensive density functional theory study in which the initial stages of NaCl dissolution have been examined at low water coverages. Our specific approach is to study how the energetic cost of moving an ion or a pair of ions to a less coordinated site at the surface of various NaCl crystals varies with the number of water molecules adsorbed on the surface. This “microsolvation” approach allows us to study the dependence of the defect energies on the number of water molecules in the cluster and thus to establish when and where dissolution becomes favorable. Moreover, this approach allows us to understand the roles of the individual ions and water molecules in the dissolution process. Consistent with previous work we identify a clear preference for dissolution of Cl ions over Na ions. However, the detailed information obtained here leads to the conclusion that the process is governed by the higher affinity of the water molecules to Na ions than to Cl ions. The Cl ions are released first as this exposes more Na ions at the surface creating favorable adsorption sites for water. We discuss how this mechanism is likely to be effective for other alkali halides.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/23/1.4840675.html;jsessionid=GF_Bvvv7FU4QgyIzZ2aI5-Jm.x-aip-live-02?itemId=/content/aip/journal/jcp/139/23/10.1063/1.4840675&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/23/10.1063/1.4840675&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/23/10.1063/1.4840675'
Right1,Right2,Right3,