Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. J. Peters and G. E. Ewing, J. Phys. Chem. B 101, 10880 (1997).
2. S. J. Peters and G. E. Ewing, Langmuir 13, 6345 (1997).
3. M. C. Foster and G. E. Ewing, J. Chem. Phys. 112, 6817 (2000).
4. S. Fölsch and M. Henzler, Surf. Sci. 264, 65 (1992).
5. J. Hu, X. Xiao, D. F. Ogletree, and M. Salmeron, Science 268, 267 (1995).
6. J. Hu, X. Xiao, and M. Salmeron, Appl. Phys. Lett. 67, 476 (1995).
7. Q. Dai, J. Hu, and M. Salmeron, J. Phys. Chem. B 101, 1994 (1997).
8. H. Shindo, M. Ohashi, K. Baba, and A. Seo, Surf. Sci. 357, 111 (1996).
9. H. Shindo, M. Ohashi, O. Tateishi, and A. Seo, J. Chem. Soc., Faraday Trans. 93, 1169 (1997).
10. H. Shindo and M. Ohashi, Appl. Phys. A 66, S487 (1998).
11. M. Luna, F. Rieutord, N. A. Melman, Q. Dai, and M. Salmeron, J. Phys. Chem. A 102, 6793 (1998).
12. S. Garcia-Manyes, A. Verdaguer, P. Gorostiza, and F. Sanz, J. Chem. Phys. 120, 2963 (2004).
13. S. Ghosal, A. Verdaguer, J. C. Hemminger, and M. Salmeron, J. Phys. Chem. A 109, 4744 (2005).
14. A. Verdaguer, G. M. Sacha, M. Luna, D. F. Ogletree, and M. Salmeron, J. Chem. Phys. 123, 124703 (2005).
15. A. Verdaguer, J. J. Segura, J. Fraxedas, H. Bluhm, and M. Salmeron, J. Phys. Chem. C 112, 16898 (2008).
16. S. Yamabe, H. Kouno, and K. Matsumura, J. Phys. Chem. B 104, 10242 (2000).
17. R. N. Barnett and U. Landman, J. Phys. Chem. 100, 13950 (1996).
18. P. Jungwirth, J. Phys. Chem. A 104, 145 (2000).
19. H. Ohtaki, N. Fukushima, E. Hayakawa, and I. Okada, Pure Appl. Chem. 60, 1321 (1988).
20. Y. Yang, S. Meng, L. F. Xu, E. G. Wang, and S. Gao, Phys. Rev. E 72, 012602 (2005).
21. R. Bahadur, L. M. Russell, S. Alavi, S. T. Martin, and P. R. Buseck, J. Chem. Phys. 124, 154713 (2006).
22. A. Y. Zasetsky, J. J. Sloan, and I. M. Svishchev, J. Phys. Chem. A 112, 3114 (2008).
23. L. Liu, M. Krack, and A. Michaelides, J. Am. Chem. Soc. 130, 8572 (2008).
24. L.-M. Liu, M. Krack, and A. Michaelides, J. Chem. Phys. 130, 234702 (2009).
25. L.-M. Liu, A. Laio, and A. Michaelides, Phys. Chem. Chem. Phys. 13, 13162 (2011).
26. E. Stöckelmann and R. Hentschke, J. Chem. Phys. 110, 12097 (1999).
27. B. Li, A. Michaelides, and M. Scheffler, Phys. Rev. B 76, 075401 (2007).
28. B. Li, A. Michaelides, and M. Scheffler, Surf. Sci. 602, L135 (2008).
29. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010).
30. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
31. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
32.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
33. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
34. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
35. B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
36. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
37. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
38. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
39. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
40.See supplementary material at for results of tests of various force fields for water and NaCl, adsorption energies usng the optB86b-vdW functional, and additional structures of adsorbed water. [Supplementary Material]
41. T. J. Lawton, J. Carrasco, A. E. Baber, A. Michaelides, and E. C. H. Sykes, Phys. Rev. Lett. 107, 256101 (2011).
42. J. Carrasco, J. Klimeš, and A. Michaelides, J. Chem. Phys. 138, 024708 (2013).
43. F. Hanke, M. S. Dyer, J. Björk, and M. Persson, J. Phys.: Condens. Matter 24, 424217 (2012).
44. M. Forster, R. Raval, J. Carrasco, A. Michaelides, and A. Hodgson, Chem. Sci. 3, 93 (2012).
45. E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001); online at
46. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
47. J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).<1049::AID-JCC3>3.0.CO;2-F
48. E. J. Sorin and V. S. Pande, Biophys. J. 88, 2472 (2005).
49. W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985).
50. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
51. D. J. Wales, Energy Landscapes: With Applications to Clusters, Biomolecules, and Glasses (Cambridge University Press, Cambridge, UK, 2003).
52. C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).
53.Overall we have performed full geometry optimisations using DFT for over 500 structures containing around 200 atoms.
54. C. Ignatius, Master's thesis, University College London, 2010.
55. J. M. Park, J. H. Cho, and K. S. Kim, Phys. Rev. B 69, 233403 (2004).
56. P. Cabrera-Sanfelix, A. Arnau, G. R. Darling, and D. Sanchez-Portal, J. Phys. Chem. B 110, 24559 (2006).
57. Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B 74, 245409 (2006).
58. P. Cabrera-Sanfelix and G. R. Darling, J. Phys. Chem. C 111, 18258 (2007).
59. B. Ahlswede and K. Jug, Surf. Sci. 439, 86 (1999).
60. B. Li, Ph.D. thesis, Technical University of Berlin, 2009, see
61. M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. 77, 703 (1996).
62. S. Meng, E. G. Wang, and S. Gao, Phys. Rev. B 69, 195404 (2004).
63. D. Donadio, L. M. Ghiringhelli, and L. Delle Site, J. Am. Chem. Soc. 134, 19217 (2012).
64.Another reason for not observing favorable release of the ion from the kink might be the structural model we have chosen. On the kink structure the water molecules can form clusters in the corners between the terraces. The adsorption in such clusters seems to be quite strong as can be inferred from Figure 3. Between 12 and 18 water molecules the adsorption energy on the kink is almost constant while there is a progressive loss on the step. Thus it can be expected once the space between the steps on the kinks are full of water clusters, the adsorption of subsequent water molecules will be less stabilized and the creation of the defects more favored. A model of the surface which would not be affected by the adsorption around corner sites could lead to change in the results. For this, however, either a very large periodic cell would have to be used or a cluster model.
65. X. Hu, J. Carrasco, J. Klimeš, and A. Michaelides, Phys. Chem. Chem. Phys. 13, 12447 (2011).
66.Even for the defect sites the O–H bond length expands only by up to ∼0.03 Å. Moreover, we considered the “Cl near” defect on the step with 16 water molecules and moved one hydrogen from the water molecule located in the vacancy to the Cl ion. The structure with dissociated water is at least 3.5 eV higher in energy making the dissociation unfavorable.

Data & Media loading...


Article metrics loading...



The dissolution of NaCl in water is one of the most common everyday processes, yet it remains poorly understood at the molecular level. Here we report the results of an extensive density functional theory study in which the initial stages of NaCl dissolution have been examined at low water coverages. Our specific approach is to study how the energetic cost of moving an ion or a pair of ions to a less coordinated site at the surface of various NaCl crystals varies with the number of water molecules adsorbed on the surface. This “microsolvation” approach allows us to study the dependence of the defect energies on the number of water molecules in the cluster and thus to establish when and where dissolution becomes favorable. Moreover, this approach allows us to understand the roles of the individual ions and water molecules in the dissolution process. Consistent with previous work we identify a clear preference for dissolution of Cl ions over Na ions. However, the detailed information obtained here leads to the conclusion that the process is governed by the higher affinity of the water molecules to Na ions than to Cl ions. The Cl ions are released first as this exposes more Na ions at the surface creating favorable adsorption sites for water. We discuss how this mechanism is likely to be effective for other alkali halides.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd