Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. P. Borbat, H. S. Mchaourab, and J. H. Freed, J. Am. Chem. Soc. 124, 5304 (2002).
2. J. H. Freed, Spin Labeling Theory and Applications (Academic Press, New York, 1976), p. 53.
3. Y. Hovav, A. Feintuch, and S. Vega, J. Chem. Phys. 134, 074509 (2011).
4. P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomango, C. Griesenger, and M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008).
5. B. D. Armstrong and S. Han, J. Am. Chem. Soc. 131, 4641 (2009).
6. M. Bennati, C. Luchinat, G. Parigi, and M.-T. Türke, Phys. Chem. Chem. Phys. 12, 5902 (2010).
7. M.-T. Türke, G. Parigi, C. Luchinat, and M. Bennati, Phys. Chem. Chem. Phys. 14, 502 (2012).
8. J. Kowalewski, D. Kruk, and G. Parigi, Adv. Inorg. Chem. 57, 41 (2005).
9. I. Bertini, C. Luchinat, and G. Parigi, Solution NMR of Paramagnetic Molecules (Elsevier, Amsterdam, 2001).
10. D. Kruk, A. Korpała, E. A. Rössler, K. A. Earle, W. Medycki, and J. K. Moscicki, J. Chem. Phys. 136, 114504 (2012).
11. D. Kruk, A. Korpała, J. Kowalewski, E. A. Rössler, and J. Moscicki, J. Chem. Phys. 137, 044512 (2012).
12. D. Kruk, A. Korpała, A. Kubica, J. Kowalewski, E. A. Rössler, and J. Moscicki, J. Chem. Phys. 138, 124506 (2013).
13. Y. Ayant, E. Belorizky, P. Fries, and J. Rosset, J. Phys. (Paris) 38, 325 (1977).
14. J. P. Albrand, M. C. Taieb, P. H. Fries, and E. Belorizky, J. Chem. Phys. 75, 2141 (1981).
15. J. P. Albrand, M. C. Taieb, P. H. Fries, and E. Belorizky, J. Chem. Phys. 78, 5809 (1983).
16. D. Kruk, T. Nilsson, and J. Kowalewski, Phys. Chem. Chem. Phys. 3, 4907 (2001).
17. S. Rast, P. H. Fries, and E. Belorizky, J. Chem. Phys. 113, 8724 (2000).
18. T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000).
19. N. Schaefle and R. Sharp, J. Chem. Phys. 121, 5387 (2004).
20. P. H. Fries and E. Belorizky, J. Chem. Phys. 126, 204503 (2007).
21. E. Belorizky, P. H. Fries, L. Helm, J. Kowalewski, D. Kruk, R. R. Sharp, and P. O. Westlund, J. Chem. Phys. 128, 052315 (2008).
22. D. Kruk and J. Kowalewski, J. Chem. Phys. 130, 174104 (2009).
23. D. Kruk, J. Kowalewski, D. S. Tipikin, J. H. Freed, M. Moscicki, A. Mielczarek, and M. Port, J. Chem Phys. 134, 024508 (2011).
24. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1990).
25. A. G. Redfield, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 1996), pp. 4085.
26. G. Moro and J. H. Freed, J. Chem. Phys. 74, 3757 (1981).
27. D. J. Schneider and J. H. Freed, Adv. Chem. Phys. 73, 387 (1989).
28. D. J. Schneider and J. H. Freed, Biol. Magn. Reson. 8, 1 (1989).
29. Z. C. Liang and J. H. Freed, J. Phys. Chem. B 103, 6384 (1999).
30. I. Bertini, F. Briganti, C. Luchinat, M. Mancini, and G. J. Spina, J. Magn. Reson. 63, 41 (1985).
31. E. Belorizky, D. G. Gilies, W. Gorecki, K. Lang, F. Noack, C. Roux, J. Struppe, L. H. Suteliffe, J. P. Travers, and X. Wu, J. Phys. Chem. A 102, 3674 (1998).
32. R. Owenius, G. E. Terry, M. J. Williams, S. S. Eaton, and G. R. Eaton, J. Phys. Chem. B 108, 9475 (2004).
33. H. Sato, S. E. Bottle, J. P. Blinco, A. S. Micallef, G. R. Eaton, and S. S. Eaton, J. Magn. Reson. 191, 66 (2008).
34. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
35. I. Solomon, Phys. Rev. 99, 559 (1955).
36. N. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).
37. D. Kruk, Theory of Evolution and Relaxation of Multi-Spin Systems (Bury St Edmunds, Arima, 2007).
38. J. Kowalewski and L. Mäler, Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications (Taylor & Francis, New York, 2006).
39. L. P. Hwang and J. H. Freed, J. Chem. Phys. 63, 4017 (1975).
40. Y. Ayant, E. Belorizky, J. Alizon, and J. Gallice, J. Phys. (Paris) 36, 991 (1975).
41. R. Meier, D. Kruk, J. Gmeiner, and E. A. Rössler, J. Chem. Phys. 136, 034508 (2012).
42. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), Vol. 2.
43. D. Kruk, A. Herrmann, and E. A. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 63, 33 (2012).
44. D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Reson., Ser. A 120, 155 (1996).
45. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).
46. R. Meier, R. Kahlau, D. Kruk, and E. A. Rössler, J. Phys. Chem. A 114, 7847 (2010).
47. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
48. R. Meier, D. Kruk, A. Bourdick, E. Schneider, and E. A. Rössler, Appl. Magn. Reson. 44, 153 (2013).
49. M. Florent, I. Kaminker, V. Nagarajan, and D. Goldfarb, J. Magn. Reson. 210, 192 (2011).

Data & Media loading...


Article metrics loading...



Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d containing 15N and 14N isotopes. The NMRD experiments refer to 1H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys.138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the 1H relaxation of the solvent. The 1H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd