1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/24/10.1063/1.4850635
1.
1. P. P. Borbat, H. S. Mchaourab, and J. H. Freed, J. Am. Chem. Soc. 124, 5304 (2002).
http://dx.doi.org/10.1021/ja020040y
2.
2. J. H. Freed, Spin Labeling Theory and Applications (Academic Press, New York, 1976), p. 53.
3.
3. Y. Hovav, A. Feintuch, and S. Vega, J. Chem. Phys. 134, 074509 (2011).
http://dx.doi.org/10.1063/1.3526486
4.
4. P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomango, C. Griesenger, and M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008).
http://dx.doi.org/10.1021/ja0783207
5.
5. B. D. Armstrong and S. Han, J. Am. Chem. Soc. 131, 4641 (2009).
http://dx.doi.org/10.1021/ja809259q
6.
6. M. Bennati, C. Luchinat, G. Parigi, and M.-T. Türke, Phys. Chem. Chem. Phys. 12, 5902 (2010).
http://dx.doi.org/10.1039/c002304n
7.
7. M.-T. Türke, G. Parigi, C. Luchinat, and M. Bennati, Phys. Chem. Chem. Phys. 14, 502 (2012).
http://dx.doi.org/10.1039/c1cp22332a
8.
8. J. Kowalewski, D. Kruk, and G. Parigi, Adv. Inorg. Chem. 57, 41 (2005).
http://dx.doi.org/10.1016/S0898-8838(05)57002-8
9.
9. I. Bertini, C. Luchinat, and G. Parigi, Solution NMR of Paramagnetic Molecules (Elsevier, Amsterdam, 2001).
10.
10. D. Kruk, A. Korpała, E. A. Rössler, K. A. Earle, W. Medycki, and J. K. Moscicki, J. Chem. Phys. 136, 114504 (2012).
http://dx.doi.org/10.1063/1.3692603
11.
11. D. Kruk, A. Korpała, J. Kowalewski, E. A. Rössler, and J. Moscicki, J. Chem. Phys. 137, 044512 (2012).
http://dx.doi.org/10.1063/1.4736854
12.
12. D. Kruk, A. Korpała, A. Kubica, J. Kowalewski, E. A. Rössler, and J. Moscicki, J. Chem. Phys. 138, 124506 (2013).
http://dx.doi.org/10.1063/1.4795006
13.
13. Y. Ayant, E. Belorizky, P. Fries, and J. Rosset, J. Phys. (Paris) 38, 325 (1977).
http://dx.doi.org/10.1051/jphys:01977003803032500
14.
14. J. P. Albrand, M. C. Taieb, P. H. Fries, and E. Belorizky, J. Chem. Phys. 75, 2141 (1981).
http://dx.doi.org/10.1063/1.442318
15.
15. J. P. Albrand, M. C. Taieb, P. H. Fries, and E. Belorizky, J. Chem. Phys. 78, 5809 (1983).
http://dx.doi.org/10.1063/1.445424
16.
16. D. Kruk, T. Nilsson, and J. Kowalewski, Phys. Chem. Chem. Phys. 3, 4907 (2001).
http://dx.doi.org/10.1039/b106659p
17.
17. S. Rast, P. H. Fries, and E. Belorizky, J. Chem. Phys. 113, 8724 (2000).
http://dx.doi.org/10.1063/1.1289882
18.
18. T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000).
http://dx.doi.org/10.1006/jmre.2000.2125
19.
19. N. Schaefle and R. Sharp, J. Chem. Phys. 121, 5387 (2004).
http://dx.doi.org/10.1063/1.1786577
20.
20. P. H. Fries and E. Belorizky, J. Chem. Phys. 126, 204503 (2007).
http://dx.doi.org/10.1063/1.2730831
21.
21. E. Belorizky, P. H. Fries, L. Helm, J. Kowalewski, D. Kruk, R. R. Sharp, and P. O. Westlund, J. Chem. Phys. 128, 052315 (2008).
http://dx.doi.org/10.1063/1.2833957
22.
22. D. Kruk and J. Kowalewski, J. Chem. Phys. 130, 174104 (2009).
http://dx.doi.org/10.1063/1.3119635
23.
23. D. Kruk, J. Kowalewski, D. S. Tipikin, J. H. Freed, M. Moscicki, A. Mielczarek, and M. Port, J. Chem Phys. 134, 024508 (2011).
http://dx.doi.org/10.1063/1.3516590
24.
24. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1990).
25.
25. A. G. Redfield, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 1996), pp. 4085.
26.
26. G. Moro and J. H. Freed, J. Chem. Phys. 74, 3757 (1981).
http://dx.doi.org/10.1063/1.441604
27.
27. D. J. Schneider and J. H. Freed, Adv. Chem. Phys. 73, 387 (1989).
http://dx.doi.org/10.1002/9780470141229.ch10
28.
28. D. J. Schneider and J. H. Freed, Biol. Magn. Reson. 8, 1 (1989).
http://dx.doi.org/10.1007/978-1-4613-0743-3_1
29.
29. Z. C. Liang and J. H. Freed, J. Phys. Chem. B 103, 6384 (1999).
http://dx.doi.org/10.1021/jp9907746
30.
30. I. Bertini, F. Briganti, C. Luchinat, M. Mancini, and G. J. Spina, J. Magn. Reson. 63, 41 (1985).
http://dx.doi.org/10.1016/0022-2364(85)90151-9
31.
31. E. Belorizky, D. G. Gilies, W. Gorecki, K. Lang, F. Noack, C. Roux, J. Struppe, L. H. Suteliffe, J. P. Travers, and X. Wu, J. Phys. Chem. A 102, 3674 (1998).
http://dx.doi.org/10.1021/jp980397h
32.
32. R. Owenius, G. E. Terry, M. J. Williams, S. S. Eaton, and G. R. Eaton, J. Phys. Chem. B 108, 9475 (2004).
http://dx.doi.org/10.1021/jp036020f
33.
33. H. Sato, S. E. Bottle, J. P. Blinco, A. S. Micallef, G. R. Eaton, and S. S. Eaton, J. Magn. Reson. 191, 66 (2008).
http://dx.doi.org/10.1016/j.jmr.2007.12.003
34.
34. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
35.
35. I. Solomon, Phys. Rev. 99, 559 (1955).
http://dx.doi.org/10.1103/PhysRev.99.559
36.
36. N. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).
http://dx.doi.org/10.1063/1.1731684
37.
37. D. Kruk, Theory of Evolution and Relaxation of Multi-Spin Systems (Bury St Edmunds, Arima, 2007).
38.
38. J. Kowalewski and L. Mäler, Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications (Taylor & Francis, New York, 2006).
39.
39. L. P. Hwang and J. H. Freed, J. Chem. Phys. 63, 4017 (1975).
http://dx.doi.org/10.1063/1.431841
40.
40. Y. Ayant, E. Belorizky, J. Alizon, and J. Gallice, J. Phys. (Paris) 36, 991 (1975).
http://dx.doi.org/10.1051/jphys:019750036010099100
41.
41. R. Meier, D. Kruk, J. Gmeiner, and E. A. Rössler, J. Chem. Phys. 136, 034508 (2012).
http://dx.doi.org/10.1063/1.3672096
42.
42. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), Vol. 2.
43.
43. D. Kruk, A. Herrmann, and E. A. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 63, 33 (2012).
http://dx.doi.org/10.1016/j.pnmrs.2011.08.001
44.
44. D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Reson., Ser. A 120, 155 (1996).
http://dx.doi.org/10.1006/jmra.1996.0113
45.
45. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).
http://dx.doi.org/10.1016/j.jmr.2005.08.013
46.
46. R. Meier, R. Kahlau, D. Kruk, and E. A. Rössler, J. Phys. Chem. A 114, 7847 (2010).
http://dx.doi.org/10.1021/jp102498q
47.
47. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
48.
48. R. Meier, D. Kruk, A. Bourdick, E. Schneider, and E. A. Rössler, Appl. Magn. Reson. 44, 153 (2013).
http://dx.doi.org/10.1007/s00723-012-0410-1
49.
49. M. Florent, I. Kaminker, V. Nagarajan, and D. Goldfarb, J. Magn. Reson. 210, 192 (2011).
http://dx.doi.org/10.1016/j.jmr.2011.03.005
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/24/10.1063/1.4850635
Loading
/content/aip/journal/jcp/139/24/10.1063/1.4850635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/24/10.1063/1.4850635
2013-12-27
2014-11-28

Abstract

Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d containing 15N and 14N isotopes. The NMRD experiments refer to 1H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys.138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the 1H relaxation of the solvent. The 1H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/24/1.4850635.html;jsessionid=ahd5h6phuma7m.x-aip-live-03?itemId=/content/aip/journal/jcp/139/24/10.1063/1.4850635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/24/10.1063/1.4850635
10.1063/1.4850635
SEARCH_EXPAND_ITEM