1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
How does the isomerization rate affect the photoisomerization-induced transport properties of a doped molecular glass-former?
Rent:
Rent this article for
USD
10.1063/1.4813410
/content/aip/journal/jcp/139/3/10.1063/1.4813410
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/3/10.1063/1.4813410

Figures

Image of FIG. 1.
FIG. 1.

(a) Diffusion coefficient of the host molecules versus the isomerization frequency = 1/τ. The temperatures are from bottom to top: T = 100 K (black circles solid and open); T = 140 K (solid and open red circles); T = 200 K (open red and solid grey triangles). These temperatures are effective temperatures of the coarse grain model. The lowest temperature (T = 100 K) is below ≈ 105 K in the model while the two others are above but below ≈ 300 K. As reaches around , the curves must decrease at some temperature in between 200 K and 300 K. However, the uncertainty of the difference ( ) increases with temperature in our simulations making 200 K the largest temperature that could be displayed here. The values in this figure are Å/ns, Å/ns, and Å/ns. In order to evaluate a possible aging mechanism associated with the isomerization we show two sort of data on the figure. For each temperature the open symbols stand for direct simulations from an equilibrated configuration without isomerizations while the solid symbols stand for simulations that follow a 10 ns first run with the isomerization set on. The dashed lines are fit to the points with the following equation: , with γ = 1. (b) As (a) but in a logarithmic scale.

Image of FIG. 2.
FIG. 2.

Inverse of the α relaxation time 1/τ versus the isomerization rate = 1/τ for various temperatures. The α relaxation time is obtained from the relation (, τ) = . τ is equivalent to the local viscosity here and can be used as a measure of that viscosity. From bottom to top the temperatures are T = 100 K, 140 K, and 200 K. As in Figure 1(a) the open and solid symbols correspond to different aging procedures. We relate = 1/τ to the light intensity with the rough formula: 1/τ ≈ (πλ/4) .

Image of FIG. 3.
FIG. 3.

Inverse of the α relaxation time 1/τ versus the isomerization rate = 1/τ for various distance from the isomerizing chromophore. The temperature is T = 100 K. From top to bottom the distances intervals from the chromophore are: 0 < < 10 Å; 10 < < 20 Å; 0 < < ∞; and 20 < < 40 Å.

Image of FIG. 4.
FIG. 4.

(a) Radial distribution function between host molecules with the origin around the chromophore (0 < < 10 Å) for various isomerization rates. Green dotted curve: τ = 5 ps; blue dashed curve: τ = 100 ps; red continuous curve: τ = 1000 ps. The temperature is T = 100 K. (b) As (a) but at a larger distance from the chromophore (10 < < 20 Å). The three curves superimpose showing that the host main structure is unchanged at this distance from the chromophore.

Image of FIG. 5.
FIG. 5.

(a) Incoherent intermediate scattering function (, ) around the chromophore (0 < < 10 Å) for various isomerization rates = 1/τ. The temperature is T = 100 K. (b) Incoherent intermediate scattering function (, ) for host molecules chosen in the whole simulation box. The different curves correspond to various isomerization rates = 1/τ. The temperature is T = 100 K.

Tables

Generic image for table
Table I.

Parameters for the DR1 and coarse grain MMA potentials from Refs. . There are no charges in the models. We use the following relations to obtain the interactions between different atoms/grains: σ = (σ·σ) and ε = (ε·ε). The two molecules are modeled as rigid bodies.

Generic image for table
Table II.

Positions of the atoms and grains (in Å) inside the MMA molecule. The 15 atoms of the MMA molecule are modeled as 4 grains (i.e., center of forces) to increase the simulation efficiency. These 4 grains are located on the positions of the first 4 carbons of the list. However the positions of the masses of the 15 atoms are considered in the equations of motions. Details on this coarse grain model may be found in Ref. . In contrast, the DR1 molecule is modeled with a center of force on each atomic position.

Loading

Article metrics loading...

/content/aip/journal/jcp/139/3/10.1063/1.4813410
2013-07-17
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: How does the isomerization rate affect the photoisomerization-induced transport properties of a doped molecular glass-former?
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/3/10.1063/1.4813410
10.1063/1.4813410
SEARCH_EXPAND_ITEM