1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Nonadiabatic ring-polymer molecular dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/3/10.1063/1.4816124
1.
1. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004).
2.
2. G. Stock and M. Thoss, Adv. Chem. Phys. 131, 243 (2005).
http://dx.doi.org/10.1002/0471739464
3.
3. B. G. Levine and T. J. Martínez, Annu. Rev. Phys. Chem. 58, 613 (2007).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
4.
4. W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
http://dx.doi.org/10.1021/jp809907p
5.
5. J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
http://dx.doi.org/10.1063/1.4757762
6.
6.For an overview see the reviews 2–5 and references therein.
7.
7. D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
8.
8. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004);
http://dx.doi.org/10.1063/1.1777575
8.B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
9.
9. S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller III, Annu. Rev. Phys. Chem. 64, 387 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
10.
10. A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011);
http://dx.doi.org/10.1063/1.3624766
10.J. S. Kretchmer and T. F. Miller III, J. Chem. Phys. 138, 134109 (2013).
http://dx.doi.org/10.1063/1.4797462
11.
11. H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979).
http://dx.doi.org/10.1063/1.437910
12.
12. G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.578
13.
13. X. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998);
http://dx.doi.org/10.1063/1.477389
13.H. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys. 110, 4828 (1999).
http://dx.doi.org/10.1063/1.478388
14.
14. N. Ananth and T. F. Miller III, J. Chem. Phys. 133, 234103 (2010).
http://dx.doi.org/10.1063/1.3511700
15.
15. U. Müller and G. Stock, J. Chem. Phys. 108, 7516 (1998);
http://dx.doi.org/10.1063/1.476184
15.U. Müller and G. Stock, J. Chem. Phys. 111, 77 (1999).
http://dx.doi.org/10.1063/1.479255
16.
16. J.-L. Liao and G. A. Voth, J. Phys. Chem. B 106, 8449 (2002).
http://dx.doi.org/10.1021/jp020978d
17.
17. S. Bonella and D. F. Coker, J. Chem. Phys. 118, 4370 (2003);
http://dx.doi.org/10.1063/1.1542883
17.H. Kim, A. Nassimi, and R. Kapral, J. Chem. Phys. 129, 084102 (2008);
http://dx.doi.org/10.1063/1.2971041
17.P. Huo and D. F. Coker, J. Chem. Phys. 135, 201101 (2011).
http://dx.doi.org/10.1063/1.3664763
18.
18. P. Shushkov, R. Li, and J. C. Tully, J. Chem. Phys. 137, 22A549 (2012).
http://dx.doi.org/10.1063/1.4766449
19.
19. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.279
20.
20. J. R. Schmidt and J. C. Tully, J. Chem. Phys. 127, 094103 (2007).
http://dx.doi.org/10.1063/1.2757170
21.
21. M. H. Alexander, Chem. Phys. Lett. 347, 436 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01012-0
22.
22.The CMD diabatic projection operator, , with and defined like Eq. (13), leads to incorrect results as it is well known that nonlinear operators treated in this way give rise to higher-order Kubo transforms. See D. R. Reichman, P.-N. Roy, S. Jang, and G. A. Voth, J. Chem. Phys. 113, 919 (2000).
http://dx.doi.org/10.1063/1.481872
23.
23. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009);
http://dx.doi.org/10.1063/1.3267318
23.T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013).
http://dx.doi.org/10.1063/1.4792697
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/3/10.1063/1.4816124
Loading
/content/aip/journal/jcp/139/3/10.1063/1.4816124
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/3/10.1063/1.4816124
2013-07-19
2014-11-26

Abstract

A new method based on an extension of ring-polymer molecular dynamics is proposed for the calculation of thermal correlation functions in electronically nonadiabatic systems. The ring-polymer dynamics are performed using a continuous-variable representation of the electronic states within the mapping approach, such that the electronic and nuclear degrees of freedom are treated on an equal footing. Illustrative applications of the method show good agreement with exact quantum results for the dynamics over short to moderate times and reveal a systematic improvement over the classical implementation of the mapping approach (single-bead limit). Being based on trajectories, the method scales well with the number of degrees of freedom and will be applicable to simulate certain nonadiabatic processes in complex molecular systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/3/1.4816124.html;jsessionid=26gs4bp6v7cag.x-aip-live-03?itemId=/content/aip/journal/jcp/139/3/10.1063/1.4816124&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Nonadiabatic ring-polymer molecular dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/3/10.1063/1.4816124
10.1063/1.4816124
SEARCH_EXPAND_ITEM