1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/4/10.1063/1.4816523
1.
1. O. Mishima and H. Stanley, Nature (London) 396, 329 (1998).
http://dx.doi.org/10.1038/24540
2.
2. C. A. Angell, Annu. Rev. Phys. Chem. 34, 593 (1983).
http://dx.doi.org/10.1146/annurev.pc.34.100183.003113
3.
3. R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).
http://dx.doi.org/10.1063/1.433153
4.
4. P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
5.
5. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010).
http://dx.doi.org/10.1073/pnas.1015340107
6.
6. A. Faraone, L. Liu, C. Y. Mou, C. W. Yen, and S. H. Chen, J. Chem. Phys. 121, 10843 (2004).
http://dx.doi.org/10.1063/1.1832595
7.
7. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C. Y. Mou, and S. H. Chen, J. Chem. Phys. 124, 161102 (2006).
http://dx.doi.org/10.1063/1.2193159
8.
8. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Phys. Rev. Lett. 95, 117802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.117802
9.
9. C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
10.
10. C. A. Angell, Chem. Rev. 102, 2627 (2002).
http://dx.doi.org/10.1021/cr000689q
11.
11. J. Wolfe and G. Bryant, Int. J. Refrig. 24, 438 (2001).
http://dx.doi.org/10.1016/S0140-7007(00)00027-X
12.
12. S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, J. Phys.: Condens. Matter 21, 504102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/50/504102
13.
13. F. Mallamace, C. Corsaro, H. E. Stanley, and S. H. Chen, Eur. Phys. J. E 34, 94 (2011).
http://dx.doi.org/10.1140/epje/i2011-11094-7
14.
14. G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301 (2013).
http://dx.doi.org/10.1063/1.4795539
15.
15. L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 16558 (2005).
http://dx.doi.org/10.1073/pnas.0507870102
16.
16. Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009).
http://dx.doi.org/10.1063/1.3229892
17.
17. J. L. Abascal and C. Vega, J. Chem. Phys. 133, 234502 (2010).
http://dx.doi.org/10.1063/1.3506860
18.
18. J. L. Abascal and C. Vega, J. Chem. Phys. 134, 186101 (2011).
http://dx.doi.org/10.1063/1.3585676
19.
19. P. Gallo, M. Rovere, and S. H. Chen, J. Phys.: Condens. Matter 24, 064109 (2012).
http://dx.doi.org/10.1088/0953-8984/24/6/064109
20.
20. P. Gallo, M. Rovere, and S. H. Chen, J. Phys. Chem. Lett. 1, 729 (2010).
http://dx.doi.org/10.1021/jz9003125
21.
21. P. Kumar, S. V. Buldyrev, S. R. Becker, P. H. Poole, F. W. Starr, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 104, 9575 (2007).
http://dx.doi.org/10.1073/pnas.0702608104
22.
22. P. Gallo and M. Rovere, J. Chem. Phys. 137, 164503 (2012).
http://dx.doi.org/10.1063/1.4759262
23.
23. M. Matsumoto, S. Saito, and I. Ohmine, Nature (London) 416, 409 (2002).
http://dx.doi.org/10.1038/416409a
24.
24. R. Radhakrishnan and B. L. Trout, J. Am. Chem. Soc. 125, 7743 (2003).
http://dx.doi.org/10.1021/ja0211252
25.
25. F. Mallamace, C. Corsaro, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 110, 4899 (2013).
http://dx.doi.org/10.1073/pnas.1221805110
26.
26. M. Nakanishi, P. Griffin, E. Mamontov, and A. Sokolov, J. Chem. Phys. 136, 124512 (2012).
http://dx.doi.org/10.1063/1.3697841
27.
27. V. Holten, C. E. Bertrand, M. A. Anisimov, and J. V. Sengers, J. Chem. Phys. 136, 094507 (2012).
http://dx.doi.org/10.1063/1.3690497
28.
28. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
29.
29. D. T. Limmer and D. Chandler, J. Chem. Phys. 137, 044509 (2012).
http://dx.doi.org/10.1063/1.4737907
30.
30. J. Teixeira, M. Bellissent-Funel, and A. J. Dianoux, Phys. Rev. A 31, 1913 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1913
31.
31. D. Paschek and A. Geiger, J. Phys. Chem. B 103, 4139 (1999).
http://dx.doi.org/10.1021/jp984075p
32.
32. J. Qvist, H. Schober, and B. Halle, J. Chem. Phys. 134, 144508 (2011).
http://dx.doi.org/10.1063/1.3578472
33.
33. S. W. Rick, J. Chem. Phys. 120, 6085 (2004).
http://dx.doi.org/10.1063/1.1652434
34.
34. M. D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
35.
35. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
36.
36. R. García Fernández, J. L. F. Abascal, and C. Vega, J. Chem. Phys. 124, 144506 (2006).
http://dx.doi.org/10.1063/1.2183308
37.
37. R. G. Pereyra, A. J. Bermúdez di Lorenzo, D. C. Malaspina, and M. A. Carignano, Chem. Phys. Lett. 538, 35 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.04.022
38.
38. H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004).
http://dx.doi.org/10.1063/1.1683075
39.
39. C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
http://dx.doi.org/10.1039/c1cp22168j
40.
40. M. A. Carignano, P. B. Shepson, and I. Szleifer, Mol. Phys. 103, 2957 (2005).
http://dx.doi.org/10.1080/00268970500243796
41.
41. D. C. Malaspina, A. J. Bermudez di Lorenzo, R. G. Pereyra, I. Szleifer, and M. A. Carignano, J. Chem. Phys. 139, 024506 (2013).
http://dx.doi.org/10.1063/1.4812928
42.
42. E. R. Weeks and D. A. Weitz, Chem. Phys. 284, 361 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00667-5
43.
43. B. Doliwa and A. Heuer, Phys. Rev. Lett. 80, 4915 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4915
44.
44. P. Gallo, F. Sciortino, P. Tartaglia, and S. H. Chen, Phys. Rev. Lett. 76, 2730 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2730
45.
45. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. E 62, 579 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.579
46.
46. A. Luzar and D. Chandler, Nature (London) 379, 55 (1996).
http://dx.doi.org/10.1038/379055a0
47.
47. C. Donati, J. Douglas, W. Kob, S. Plimpton, P. Poole, and S. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2338
48.
48. C. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
49.
49. S. Nofal, U. Becherer, D. Hof, U. Matti, and J. Rettig, J. Neurosci. 27, 1386 (2007).
http://dx.doi.org/10.1523/JNEUROSCI.4714-06.2007
50.
50. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
51.
51. C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E 60, 3107 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.3107
52.
52. D. C. Malaspina, J. A. Rodriguez Fris, G. A. Appignanesi, and F. Sciortino, Europhys. Lett. 88, 16003 (2009).
http://dx.doi.org/10.1209/0295-5075/88/16003
53.
53. W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
54.
54. S. H. Chong, S. H. Cheng, and F. Mallamace, J. Phys.: Condens. Matter 21, 504101 (2009).
http://dx.doi.org/10.1088/0953-8984/21/50/504101
55.
55. S. H. Chong, Phys. Rev. E 78, 041501 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.041501
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/4/10.1063/1.4816523
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Multi-scale displacement analysis for different temperatures ranging from 270 K to 225 K. The color scale represents the probability of a displacement at a particular time scale. Normalization is at each time scale. The solid black line represents the mean square displacement. (b) Relaxation times as a function of temperatures. Symbols are as follows: τ (black circles), τ (green diamonds), τ* (blue triangles), and τ (red squares). Lines help to indicate the fragile (dashed double dot) and strong (dashed) behavior fitted on τ data. The error bars are smaller than the size of the symbols. (c) MDA at = 230 K, dashed lines represent different relaxation times as indicated in the inset caption. Colors of dashed lines in (c) are as follows: τ (black), τ (green), τ* (blue), and τ (red).

Image of FIG. 2.

Click to view

FIG. 2.

Hydrogen bond correlation function (τ), cage correlation function (τ), non-Gaussian parameter α(τ), and Shannon entropy (τ) as a function of time interval τ calculated at 260 K (black) and 230 K (red).

Image of FIG. 3.

Click to view

FIG. 3.

Distribution of displacements at τ = τ, the time of the maximum Shannon entropy of the distribution of displacements for different temperatures.

Image of FIG. 4.

Click to view

FIG. 4.

Multi-scale displacement analysis (MDA) at τ = τ for the TIP4P-Ew model at = 200 K and 240 K.

Image of FIG. 5.

Click to view

FIG. 5.

Connection between the dynamical heterogeneity and the cooperative behavior of 230 K and 260 K TIP5P-Ew model as a function of normalized time (). (a) Cage diameter vs normalized time for each molecule in the system. (b) Mean cage diameter size ⟨⟩. (c) Mean weighted mobile cluster size ⟨()⟩. (d) Number of mobile clusters .

Loading

Article metrics loading...

/content/aip/journal/jcp/139/4/10.1063/1.4816523
2013-07-30
2014-04-18

Abstract

Using extensive molecular dynamics simulations combined with a novel approach to analyze the molecular displacements we analyzed the change in the dynamics above and below the crossover temperature for supercooled water. Our findings suggest that the crossover from fragile to strong glass former occurring at is related with a change in the diffusion mechanism evidencing the presence of jump-like diffusion at lower temperatures. Also we observe that fluctuations of the local environments are intimately connected with fluctuations in the size and the amount of cooperative cluster of mobile molecules, and in particular we find a highly cooperative nature of the motion at low temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/4/1.4816523.html;jsessionid=cfeoi0s0psie9.x-aip-live-01?itemId=/content/aip/journal/jcp/139/4/10.1063/1.4816523&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/4/10.1063/1.4816523
10.1063/1.4816523
SEARCH_EXPAND_ITEM