1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Understanding the relationship between molecular order and charge transport properties in conjugated polymer based organic blend photovoltaic devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/6/10.1063/1.4816706
1.
1. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nature Photon. 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
2.
2. C. R. McNeill, Energy Environ. Sci. 5, 5653 (2012).
http://dx.doi.org/10.1039/c2ee03071c
3.
3. D. Mori, H. Benten, H. Ohkita, S. Ito, and K. Miyake, ACS Appl. Mater. Interfaces 4, 3325 (2012).
http://dx.doi.org/10.1021/am300623f
4.
4. X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, Nano Lett. 10, 1302 (2010).
http://dx.doi.org/10.1021/nl904098m
5.
5. T. W. Holcombe, J. E. Norton, J. Rivnay, C. H. Woo, L. Goris, C. Piliego, G. Griffini, A. Sellinger, J.-L. Brédas, A. Salleo, and J. M. J. Fréchet, J. Am. Chem. Soc. 133, 12106 (2011).
http://dx.doi.org/10.1021/ja203235z
6.
6. Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, and D. D. C. Bradley, Chem. Mater. 16, 4812 (2004).
http://dx.doi.org/10.1021/cm049585c
7.
7. C. R. McNeill, A. Abrusci, I. Hwang, M. A. Ruderer, P. Müller-Buschbaum, and N. C. Greenham, Adv. Funct. Mater. 19, 3103 (2009).
http://dx.doi.org/10.1002/adfm.200900801
8.
8. T. Salim, S. Sun, L. H. Wong, L. Xi, Y. L. Foo, and Y. M. Lam, J. Phys. Chem. C 114, 9459 (2010).
http://dx.doi.org/10.1021/jp911553s
9.
9. Y. Kim and D. D. C. Bradley, Curr. Appl. Phys. 5, 222 (2005).
http://dx.doi.org/10.1016/j.cap.2003.11.090
10.
10. C. L. Donley, J. Zaumseil, J. W. Andreasen, M. M. Nielsen, H. Sirringhaus, R. H. Friend, and J.-S. Kim, J. Am. Chem. Soc. 127, 12890 (2005).
http://dx.doi.org/10.1021/ja051891j
11.
11. K. G. Jespersen, W. J. D. Beenken, Y. Zaushitsyn, A. Yartsev, M. Andersson, T. Pullerits, and V. Sundström, J. Chem. Phys. 121, 12613 (2004).
http://dx.doi.org/10.1063/1.1817873
12.
12. W. C. Tsoi, S. J. Spencer, L. Yang, A. M. Ballantyne, P. G. Nicholson, A. Turnbull, A. G. Shard, C. E. Murphy, D. D. C. Bradley, J. Nelson, and J.-S. Kim, Macromolecules 44, 2944 (2011).
http://dx.doi.org/10.1021/ma102841e
13.
13. P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B 67, 064203 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064203
14.
14. K. J. Ihn, J. Moulton, and P. Smith, J. Polym. Sci., Part B: Polym. Phys. 31, 735 (1993).
http://dx.doi.org/10.1002/polb.1993.090310614
15.
15. S. Berson, R. De Bettignies, S. Bailly, and S. Guillerez, Adv. Funct. Mater. 17, 1377 (2007).
http://dx.doi.org/10.1002/adfm.200600922
16.
16. J. S. Kim, J. H. Lee, J. H. Park, C. Shim, M. Sim, and K. Cho, Adv. Funct. Mater. 21, 480 (2011).
http://dx.doi.org/10.1002/adfm.201000971
17.
17. J.-H. Kim, J. H. Park, J. H. Lee, J. S. Kim, M. Sim, C. Shim, and K. Cho, J. Mater. Chem. 20, 7398 (2010).
http://dx.doi.org/10.1039/c0jm00666a
18.
18. J. A. Merlo and C. D. Frisbie, J. Phys. Chem. B 108, 19169 (2004).
http://dx.doi.org/10.1021/jp047023a
19.
19. W. C. Tsoi, D. T. James, E. B. Domingo, J. S. Kim, M. Al-Hashimi, C. E. Murphy, N. Stingelin, M. Heeney, and J.-S. Kim, ACS Nano 6, 9646 (2012).
http://dx.doi.org/10.1021/nn304024g
20.
20. J. P. Schmidtke, J.-S. Kim, J. Gierschner, C. Silva, and R. H. Friend, Phys. Rev. Lett. 99, 167401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.167401
21.
21. W. C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson, and J.-S. Kim, J. Am. Chem. Soc. 133, 9834 (2011).
http://dx.doi.org/10.1021/ja2013104
22.
22. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
http://dx.doi.org/10.1063/1.116583
23.
23. H. T. Nicolai, M. Kuik, G. A. H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Brédas, and P. W. M. Blom, Nature Mater. 11, 882 (2012).
http://dx.doi.org/10.1038/nmat3384
24.
24. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature (London) 401, 685 (1999).
http://dx.doi.org/10.1038/44359
25.
25. J. Cornil, D. Beljonne, J.-P. Calbert, and J.-L. Brédas, Adv. Mater. 13, 1053 (2001).
http://dx.doi.org/10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7
26.
26. C. R. McNeill, J. J. M. Halls, R. Wilson, G. L. Whiting, S. Berkebile, M. G. Ramsey, R. H. Friend, and N. C. Greenham, Adv. Funct. Mater. 18, 2309 (2008).
http://dx.doi.org/10.1002/adfm.200800182
27.
27. V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 94, 126602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.126602
28.
28. G. F. A. Dibb, T. Kirchartz, D. Credgington, J. R. Durrant, and J. Nelson, J. Phys. Chem. Lett. 2, 2407 (2011).
http://dx.doi.org/10.1021/jz201104d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/6/10.1063/1.4816706
Loading
/content/aip/journal/jcp/139/6/10.1063/1.4816706
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/6/10.1063/1.4816706
2013-08-08
2014-09-23

Abstract

We report a detailed characterization of the thin film morphology of all-polymer blend devices by applying a combined analysis of physical, chemical, optical, and charge transport properties. This is exemplified by considering a model system comprising poly(3-hexylthiophene) (P3HT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). We show that the interactions between the two conjugated polymer components can be controlled by pre-forming the P3HT into highly ordered nanowire structures prior to blending with F8BT, and by varying the molecular weight of the F8BT. As a result, it is possible to produce films containing highly ordered P3HT with hole mobilities enhanced by three orders of magnitude over the pristine blends. Raman spectroscopy under resonant excitation conditions is used to probe the molecular order of both P3HT and F8BT phases within the blend films and these morphological studies are complemented by measurements of photocurrent generation. The resultant increase in photocurrent is associated with the enhanced charge carrier mobilities. The complementary analytical method demonstrated here is applicable to a wide range of polymer blend systems for all applications where the relationships between morphology and device performance are of interest.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/6/1.4816706.html;jsessionid=8dku3b6fbqk6e.x-aip-live-02?itemId=/content/aip/journal/jcp/139/6/10.1063/1.4816706&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Understanding the relationship between molecular order and charge transport properties in conjugated polymer based organic blend photovoltaic devices
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/6/10.1063/1.4816706
10.1063/1.4816706
SEARCH_EXPAND_ITEM