Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/139/7/10.1063/1.4818727
1.
1. L. S. Myers, M. L. Hollis, L. M. Theard, F. C. Peterson, and A. Warnick, J. Am. Chem. Soc. 92, 2875 (1970).
http://dx.doi.org/10.1021/ja00712a046
2.
2. S. Fujita and S. Steenken, J. Am. Chem. Soc. 103, 2540 (1981).
http://dx.doi.org/10.1021/ja00400a009
3.
3. S. V. Jovanovic and M. G. Simic, J. Am. Chem. Soc. 108, 5968 (1986).
http://dx.doi.org/10.1021/ja00279a050
4.
4. J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. P. Pouget, J. L. Ravanat, and S. Sauvaigo, Mutat. Res.-Fund. Mol. M. 424, 9 (1999).
http://dx.doi.org/10.1016/S0027-5107(99)00004-4
5.
5. M. Mori, S. Teshima, H. Yoshimoto, S. Fujita, R. Taniguchi, H. Hatta, and S. Nishimoto, J. Phys. Chem. B 105, 2070 (2001).
http://dx.doi.org/10.1021/jp002989h
6.
6. C. von Sonntag, Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective (Springer-Verlag, Berlin, 2006).
7.
7. A. Kumar, V. Pottiboyina, and M. D. Sevilla, J. Phys. Chem. B 115, 15129 (2011).
http://dx.doi.org/10.1021/jp208841q
8.
8. C. von Sonntag, Adv. Quantum Chem. 52, 5 (2007).
http://dx.doi.org/10.1016/S0065-3276(06)52002-7
9.
9. E. Hayon and M. Simic, J. Am. Chem. Soc. 95, 1029 (1973).
http://dx.doi.org/10.1021/ja00785a007
10.
10. Y. J. Ji, Y. Y. Xia, M. W. Zhao, B. Da Huang, and F. Li, J. Mol. Struct.: THEOCHEM 723, 123 (2005).
http://dx.doi.org/10.1016/j.theochem.2005.02.039
11.
11. Y. J. Ji, Y. Y. Xia, M. W. Zhao, F. Li, and B. Huang, Int. J. Quantum Chem. 101, 211 (2005).
http://dx.doi.org/10.1002/qua.20293
12.
12. K. P. Prasanthkumar, C. H. Suresh, and C. T. Aravindakumar, Radiat. Phys. Chem. 81, 267 (2012).
http://dx.doi.org/10.1016/j.radphyschem.2011.11.001
13.
13. A. Yadav and P. C. Mishra, Int. J. Quantum Chem. 113, 56 (2013).
http://dx.doi.org/10.1002/qua.24050
14.
14.C5OH and C6OH labels refer to the ·OH addition at the C5 and C6 centers of the pyrimidine nucleobases, respectively. Meanwhile, the cytosine radical adducts are highlighted in bold and with a middle dot to denote its radical character (e.g., C5OH· or C5·), see Fig. 1.
15.
15. D. K. Hazra and S. Steenken, J. Am. Chem. Soc. 105, 4380 (1983).
http://dx.doi.org/10.1021/ja00351a042
16.
16. R. Bergene and R. A. Vaughan, Int. J. Radiat. Biol. 29, 145 (1976).
http://dx.doi.org/10.1080/09553007614550161
17.
17. R. Bergene, T. H. Johannessen, and T. Henriksen, Int. J. Radiat. Biol. 29, 541 (1976).
http://dx.doi.org/10.1080/09553007614550641
18.
18. S. Steenken and V. Jagannadham, J. Am. Chem. Soc. 107, 6818 (1985).
http://dx.doi.org/10.1021/ja00310a013
19.
19. M. Mori, T. Ito, S. Teshima, H. Hatta, S. Fujita, and S. Nishimoto, J. Phys. Chem. B 110, 12198 (2006).
http://dx.doi.org/10.1021/jp0609479
20.
20. M. N. Schuchmann, S. Steenken, J. Wroblewski, and C. von Sonntag, Int. J. Radiat. Biol. 46, 225 (1984).
http://dx.doi.org/10.1080/09553008414551341
21.
21. M. Krauss and R. Osman, J. Phys. Chem. 97, 13515 (1993).
http://dx.doi.org/10.1021/j100153a016
22.
22. M. Krauss and R. Osman, J. Phys. Chem. A 101, 4117 (1997).
http://dx.doi.org/10.1021/jp962862l
23.
23. T. Kuś, V. F. Lotrich, and R. J. Bartlett, J. Chem. Phys. 130, 124122 (2009).
http://dx.doi.org/10.1063/1.3091293
24.
24. K. P. Prasanthkumar, C. H. Suresh, and C. T. Aravindakumar, J. Phys. Chem. A 116, 10712 (2012).
http://dx.doi.org/10.1021/jp303808r
25.
25. A. M. Nowicka, A. Kowalczyk, S. Sek, and Z. Stojek, Anal. Chem. 85, 355 (2013).
http://dx.doi.org/10.1021/ac302897f
26.
26. J. Cadet, T. Douki, and J. L. Ravanat, Free Radic Biol. Med. 49, 9 (2010).
http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.025
27.
27. J. Nguyen, Y. Ma, T. Luo, R. G. Bristow, D. A. Jaffray, and Q. B. Lu, Proc. Natl. Acad. Sci. USA 108, 11778 (2011).
http://dx.doi.org/10.1073/pnas.1104367108
28.
28. M. Spotheim-Maurizot and M. Davidkova, Mutat. Res.-Fund. Mol. M 711, 41 (2011).
http://dx.doi.org/10.1016/j.mrfmmm.2011.02.003
29.
29. A. Adhikary, A. Kumar, A. N. Heizer, B. J. Palmer, V. Pottiboyina, Y. Liang, S. F. Wnuk, and M. D. Sevilla, J. Am. Chem. Soc. 135, 3121 (2013).
http://dx.doi.org/10.1021/ja310650n
30.
30. K. Andersson, P. A. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
31.
31. L. Serrano-Andrés, M. Merchán, M. P. Fülscher, and B. O. Roos, in Recent Advances in Multireference Theory, 1st ed., edited by K. Hirao (World Scientific Publishing, Singapore, 1999), pp. 161195.
32.
32. B. O. Roos, M. P. Fülscher, P.-A. Malmqvist, M. Merchán, and L. Serrano-Andrés, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, 1st ed., edited by S. R. Langhoff (Kluwer Academic Publishers, Dordretch, 1995), Vol. 60, pp. 357438.
33.
33. L. Serrano-Andrés and M. Merchán, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, P. R. Schreiner, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, and H. F. Schaefer III (Wiley, Chichester, 2004).
34.
34. M. Merchán and L. Serrano-Andrés, in Computational Photochemistry, 1st ed., edited by M. Olivucci (Elsevier, Amsterdam, The Netherlands, 2005), Vol. 16, pp. 3591.
35.
35. A. Giussani, M. Merchán, D. Roca-Sanjuán, and R. Lindh, J. Chem. Theory Comput. 7, 4088 (2011).
http://dx.doi.org/10.1021/ct200646r
36.
36. D. Roca-Sanjuán, F. Aquilante, and R. Lindh, WIREs Comput. Mol. Sci. 2, 585 (2012).
http://dx.doi.org/10.1002/wcms.97
37.
37. J. J. Serrano-Pérez and L. Serrano-Andrés, in Handbook of Computational Chemistry, edited by J. Leszczynski (Springer-Verlag, Berlin, 2012), pp. 483560.
38.
38. L. Gonzalez, D. Escudero, and L. Serrano-Andres, ChemPhysChem 13, 28 (2012).
http://dx.doi.org/10.1002/cphc.201100200
39.
39. J. Lorentzon, M. P. Fulscher, and B. O. Roos, J. Am. Chem. Soc. 117, 9265 (1995).
http://dx.doi.org/10.1021/ja00141a019
40.
40. D. Roca-Sanjuán, G. Olaso-González, M. Rubio, P. B. Coto, M. Merchán, N. Ferre, V. Ludwig, and L. Serrano-Andrés, Pure Appl. Chem. 81, 743 (2009).
http://dx.doi.org/10.1351/PAC-CON-08-08-30
41.
41. V. Ludwig, Z. M. da Costa, M. S. do Amaral, A. C. Borin, S. Canuto, and L. Serrano-Andres, Chem. Phys. Lett. 492, 164 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.04.048
42.
42. L. Serrano-Andrés and M. Merchán, in Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis, edited by M. K. Shukla and J. Leszczynski (Springer, The Netherlands, 2008), pp. 435472.
43.
43. M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008).
http://dx.doi.org/10.1063/1.2889385
44.
44. G. Olaso-González, D. Roca-Sanjuán, L. Serrano-Andrés, and M. Merchán, J. Chem. Phys. 125, 231102 (2006).
http://dx.doi.org/10.1063/1.2408411
45.
45. I. González-Ramírez, D. Roca-Sanjuán, T. Climent, J. J. Serrano-Pérez, M. Merchán, and L. Serrano-Andrés, Theor. Chem. Acc. 128, 705 (2011).
http://dx.doi.org/10.1007/s00214-010-0854-z
46.
46. L. Serrano-Andrés and M. Merchán, J. Photochem. Photobiol. C 10, 21 (2009).
http://dx.doi.org/10.1016/j.jphotochemrev.2008.12.001
47.
47. F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. A. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010).
http://dx.doi.org/10.1002/jcc.21318
48.
48.See supplementary material at http://dx.doi.org/10.1063/1.4818727 for: (1) computational details, (2) CASPT2//CASSCF/ANO-L calibration, (3) spin-density analysis, (4) conformations and polar solvent effects, and (5) Cartesian coordinates of the structures studied in this work. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/7/10.1063/1.4818727
Loading
/content/aip/journal/jcp/139/7/10.1063/1.4818727
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/7/10.1063/1.4818727
2013-08-16
2016-09-26

Abstract

Addition of ·OH radicals to pyrimidine nucleobases is a common reaction in DNA/RNA damage by reactive oxygen species. Among several experimental techniques, transient absorption spectroscopy has been during the last decades used to characterize such compounds. Discrepancies have however appeared in the assignment of the adduct or adducts responsible for the reported transient absorption UV-Vis spectra. In order to get an accurate assignment of the transient spectra and a unified description of the absorption properties of the ·OH reaction products of pyrimidines, a systematic complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory study has been carried out on the uracil, thymine, and cytosine ·OH addition adducts, as well as on the 5,6-dihydrouracil hydrogen abstraction products. With the obtained findings, the C5OH contributions to the lowest-energy band can be finally discarded. Instead, a bright ) state of the C6OH adducts is determined to be the main responsible in all compounds for the absorption band in the Vis range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/7/1.4818727.html;jsessionid=2oC4Y_wGIGQhsnhVmsDPnx5j.x-aip-live-03?itemId=/content/aip/journal/jcp/139/7/10.1063/1.4818727&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/139/7/10.1063/1.4818727&pageURL=http://scitation.aip.org/content/aip/journal/jcp/139/7/10.1063/1.4818727'
Right1,Right2,Right3,