Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. S. Myers, M. L. Hollis, L. M. Theard, F. C. Peterson, and A. Warnick, J. Am. Chem. Soc. 92, 2875 (1970).
2. S. Fujita and S. Steenken, J. Am. Chem. Soc. 103, 2540 (1981).
3. S. V. Jovanovic and M. G. Simic, J. Am. Chem. Soc. 108, 5968 (1986).
4. J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. P. Pouget, J. L. Ravanat, and S. Sauvaigo, Mutat. Res.-Fund. Mol. M. 424, 9 (1999).
5. M. Mori, S. Teshima, H. Yoshimoto, S. Fujita, R. Taniguchi, H. Hatta, and S. Nishimoto, J. Phys. Chem. B 105, 2070 (2001).
6. C. von Sonntag, Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective (Springer-Verlag, Berlin, 2006).
7. A. Kumar, V. Pottiboyina, and M. D. Sevilla, J. Phys. Chem. B 115, 15129 (2011).
8. C. von Sonntag, Adv. Quantum Chem. 52, 5 (2007).
9. E. Hayon and M. Simic, J. Am. Chem. Soc. 95, 1029 (1973).
10. Y. J. Ji, Y. Y. Xia, M. W. Zhao, B. Da Huang, and F. Li, J. Mol. Struct.: THEOCHEM 723, 123 (2005).
11. Y. J. Ji, Y. Y. Xia, M. W. Zhao, F. Li, and B. Huang, Int. J. Quantum Chem. 101, 211 (2005).
12. K. P. Prasanthkumar, C. H. Suresh, and C. T. Aravindakumar, Radiat. Phys. Chem. 81, 267 (2012).
13. A. Yadav and P. C. Mishra, Int. J. Quantum Chem. 113, 56 (2013).
14.C5OH and C6OH labels refer to the ·OH addition at the C5 and C6 centers of the pyrimidine nucleobases, respectively. Meanwhile, the cytosine radical adducts are highlighted in bold and with a middle dot to denote its radical character (e.g., C5OH· or C5·), see Fig. 1.
15. D. K. Hazra and S. Steenken, J. Am. Chem. Soc. 105, 4380 (1983).
16. R. Bergene and R. A. Vaughan, Int. J. Radiat. Biol. 29, 145 (1976).
17. R. Bergene, T. H. Johannessen, and T. Henriksen, Int. J. Radiat. Biol. 29, 541 (1976).
18. S. Steenken and V. Jagannadham, J. Am. Chem. Soc. 107, 6818 (1985).
19. M. Mori, T. Ito, S. Teshima, H. Hatta, S. Fujita, and S. Nishimoto, J. Phys. Chem. B 110, 12198 (2006).
20. M. N. Schuchmann, S. Steenken, J. Wroblewski, and C. von Sonntag, Int. J. Radiat. Biol. 46, 225 (1984).
21. M. Krauss and R. Osman, J. Phys. Chem. 97, 13515 (1993).
22. M. Krauss and R. Osman, J. Phys. Chem. A 101, 4117 (1997).
23. T. Kuś, V. F. Lotrich, and R. J. Bartlett, J. Chem. Phys. 130, 124122 (2009).
24. K. P. Prasanthkumar, C. H. Suresh, and C. T. Aravindakumar, J. Phys. Chem. A 116, 10712 (2012).
25. A. M. Nowicka, A. Kowalczyk, S. Sek, and Z. Stojek, Anal. Chem. 85, 355 (2013).
26. J. Cadet, T. Douki, and J. L. Ravanat, Free Radic Biol. Med. 49, 9 (2010).
27. J. Nguyen, Y. Ma, T. Luo, R. G. Bristow, D. A. Jaffray, and Q. B. Lu, Proc. Natl. Acad. Sci. USA 108, 11778 (2011).
28. M. Spotheim-Maurizot and M. Davidkova, Mutat. Res.-Fund. Mol. M 711, 41 (2011).
29. A. Adhikary, A. Kumar, A. N. Heizer, B. J. Palmer, V. Pottiboyina, Y. Liang, S. F. Wnuk, and M. D. Sevilla, J. Am. Chem. Soc. 135, 3121 (2013).
30. K. Andersson, P. A. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
31. L. Serrano-Andrés, M. Merchán, M. P. Fülscher, and B. O. Roos, in Recent Advances in Multireference Theory, 1st ed., edited by K. Hirao (World Scientific Publishing, Singapore, 1999), pp. 161195.
32. B. O. Roos, M. P. Fülscher, P.-A. Malmqvist, M. Merchán, and L. Serrano-Andrés, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, 1st ed., edited by S. R. Langhoff (Kluwer Academic Publishers, Dordretch, 1995), Vol. 60, pp. 357438.
33. L. Serrano-Andrés and M. Merchán, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, P. R. Schreiner, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, and H. F. Schaefer III (Wiley, Chichester, 2004).
34. M. Merchán and L. Serrano-Andrés, in Computational Photochemistry, 1st ed., edited by M. Olivucci (Elsevier, Amsterdam, The Netherlands, 2005), Vol. 16, pp. 3591.
35. A. Giussani, M. Merchán, D. Roca-Sanjuán, and R. Lindh, J. Chem. Theory Comput. 7, 4088 (2011).
36. D. Roca-Sanjuán, F. Aquilante, and R. Lindh, WIREs Comput. Mol. Sci. 2, 585 (2012).
37. J. J. Serrano-Pérez and L. Serrano-Andrés, in Handbook of Computational Chemistry, edited by J. Leszczynski (Springer-Verlag, Berlin, 2012), pp. 483560.
38. L. Gonzalez, D. Escudero, and L. Serrano-Andres, ChemPhysChem 13, 28 (2012).
39. J. Lorentzon, M. P. Fulscher, and B. O. Roos, J. Am. Chem. Soc. 117, 9265 (1995).
40. D. Roca-Sanjuán, G. Olaso-González, M. Rubio, P. B. Coto, M. Merchán, N. Ferre, V. Ludwig, and L. Serrano-Andrés, Pure Appl. Chem. 81, 743 (2009).
41. V. Ludwig, Z. M. da Costa, M. S. do Amaral, A. C. Borin, S. Canuto, and L. Serrano-Andres, Chem. Phys. Lett. 492, 164 (2010).
42. L. Serrano-Andrés and M. Merchán, in Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis, edited by M. K. Shukla and J. Leszczynski (Springer, The Netherlands, 2008), pp. 435472.
43. M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008).
44. G. Olaso-González, D. Roca-Sanjuán, L. Serrano-Andrés, and M. Merchán, J. Chem. Phys. 125, 231102 (2006).
45. I. González-Ramírez, D. Roca-Sanjuán, T. Climent, J. J. Serrano-Pérez, M. Merchán, and L. Serrano-Andrés, Theor. Chem. Acc. 128, 705 (2011).
46. L. Serrano-Andrés and M. Merchán, J. Photochem. Photobiol. C 10, 21 (2009).
47. F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. A. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010).
48.See supplementary material at for: (1) computational details, (2) CASPT2//CASSCF/ANO-L calibration, (3) spin-density analysis, (4) conformations and polar solvent effects, and (5) Cartesian coordinates of the structures studied in this work. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Addition of ·OH radicals to pyrimidine nucleobases is a common reaction in DNA/RNA damage by reactive oxygen species. Among several experimental techniques, transient absorption spectroscopy has been during the last decades used to characterize such compounds. Discrepancies have however appeared in the assignment of the adduct or adducts responsible for the reported transient absorption UV-Vis spectra. In order to get an accurate assignment of the transient spectra and a unified description of the absorption properties of the ·OH reaction products of pyrimidines, a systematic complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory study has been carried out on the uracil, thymine, and cytosine ·OH addition adducts, as well as on the 5,6-dihydrouracil hydrogen abstraction products. With the obtained findings, the C5OH contributions to the lowest-energy band can be finally discarded. Instead, a bright ) state of the C6OH adducts is determined to be the main responsible in all compounds for the absorption band in the Vis range.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd