1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Infrared spectroscopy of protonated allyl-trimethylsilane: Evidence for the β-silyl effect
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/7/10.1063/1.4818729
1.
1. E. W. Colvin, Chem. Soc. Rev. 7, 15 (1978).
http://dx.doi.org/10.1039/cs9780700015
2.
2. J. B. Lambert and Y. Zhao, J. Am. Chem. Soc. 118, 7867 (1996).
http://dx.doi.org/10.1021/ja9613670
3.
3. J. B. Lambert, Y. Zhao, R. W. Emblidge, L. A. Salvador, X. Liu, J.-H. So, and E. C. Chelius, Acc. Chem. Res. 32, 183 (1999).
http://dx.doi.org/10.1021/ar970296m
4.
4. S. G. Wierschke, J. Chandrasekhar, and W. L. Jorgensen, J. Am. Chem. Soc. 107, 1496 (1985).
http://dx.doi.org/10.1021/ja00292a008
5.
5. X. Li and J. A. Stone, J. Am. Chem. Soc. 111, 5586 (1989).
http://dx.doi.org/10.1021/ja00197a013
6.
6. H.-U. Siehl and T. Müller, in The Chemistry of Organic Silicon Compounds, edited by Z. Rappoport and Y. Apeloig (John Wiley and Sons, Ltd., 1998), p. 595.
7.
7. F. Cacace, M. E. Crestoni, and S. Fornarini, J. Am. Chem. Soc. 114, 6776 (1992).
http://dx.doi.org/10.1021/ja00043a024
8.
8. B. Chiavarino, M. E. Crestoni, and S. Fornarini, J. Am. Chem. Soc. 120, 1523 (1998).
http://dx.doi.org/10.1021/ja9734152
9.
9. S. Fornarini, in The Chemistry of Organic Silicon Compounds, edited by Z. Rappoport and Y. Apeloig (John Wiley and Sons, Ltd., 2001), p. 1027.
10.
10. N. Goldberg and H. Schwarz, in The Chemistry of Organic Silicon Compounds, edited by Z. Rappoport and Y. Apeloig (John Wiley and Sons, Ltd., 1998), p. 1105.
11.
11. A. Klaer and T. Muller, J. Phys. Org. Chem. 23, 1043 (2010).
http://dx.doi.org/10.1002/poc.1755
12.
12. H. Mayr and R. Pock, Tetrahedron 42, 4211 (1986).
http://dx.doi.org/10.1016/S0040-4020(01)87645-6
13.
13. T. Muller, R. Meyer, D. Lennartz, and H.-U. Siehl, Angew. Chem. Int. Ed. 39, 3074 (2000).
http://dx.doi.org/10.1002/1521-3773(20000901)39:17<3074::AID-ANIE3074>3.0.CO;2-T
14.
14. H.-U. Siehl, in Recent Developments in Carbocation and Onium Ion Chemistry, edited by K. K. Laali (American Chemical Society, 2007), p. 1.
15.
15. H. U. Siehl, F. P. Kaufmann, Y. Apeloig, V. Braude, D. Danovich, A. Berndt, and N. Stamatis, Angew. Chem. Int. Ed. 30, 1479 (1991).
http://dx.doi.org/10.1002/anie.199114791
16.
16. H. U. Siehl, F. P. Kaufmann, and K. Hori, J. Am. Chem. Soc. 114, 9343 (1992).
http://dx.doi.org/10.1021/ja00050a014
17.
17. R. Meyer, K. Werner, and T. Muller, Chem.-Eur. J. 8, 1163 (2002).
http://dx.doi.org/10.1002/1521-3765(20020301)8:5<1163::AID-CHEM1163>3.0.CO;2-M
18.
18. J. R. Eyler, Mass Spectrom. Rev. 28, 448 (2009).
http://dx.doi.org/10.1002/mas.20217
19.
19. N. C. Polfer, Chem. Soc. Rev. 40, 2211 (2011).
http://dx.doi.org/10.1039/c0cs00171f
20.
20. N. C. Polfer and J. Oomens, Mass Spectrom. Rev. 28, 468 (2009).
http://dx.doi.org/10.1002/mas.20215
21.
21. J. Roithova, Chem. Soc. Rev. 41, 547 (2012).
http://dx.doi.org/10.1039/c1cs15133a
22.
22. M. A. Duncan, Int. J. Mass Spectrom. 272, 99 (2008).
http://dx.doi.org/10.1016/j.ijms.2008.01.010
23.
23. T. D. Fridgen, Mass Spectrom. Rev. 28, 586 (2009).
http://dx.doi.org/10.1002/mas.20224
24.
24. L. MacAleese and P. Maitre, Mass Spectrom. Rev. 26, 583 (2007).
http://dx.doi.org/10.1002/mas.20138
25.
25. B. Chiavarino, M. E. Crestoni, O. Dopfer, P. Maitre, and S. Fornarini, Angew. Chem. Int. Ed. 51, 4947 (2012).
http://dx.doi.org/10.1002/anie.201200558
26.
26. B. Chiavarino, M. E. Crestoni, S. Fornarini, J. Lemaire, P. Maitre, and L. MacAleese, J. Am. Chem. Soc. 128, 12553 (2006).
http://dx.doi.org/10.1021/ja0637548
27.
27. B. Chiavarino, M. E. Crestoni, S. Fornarini, J. Lemaire, L. MacAleese, and P. Maitre, ChemPhysChem 6, 437 (2005).
http://dx.doi.org/10.1002/cphc.200400511
28.
28. B. Chiavarino, M. E. Crestoni, S. Fornarini, J. Lemaire, L. MacAleese, and P. Maitre, ChemPhysChem 5, 1679 (2004).
http://dx.doi.org/10.1002/cphc.200400295
29.
29. F. Lanucara, B. Chiavarino, M. E. Crestoni, D. Scuderi, R. K. Sinha, P. Maitre, and S. Fornarini, Inorg. Chem. 50, 4445 (2011).
http://dx.doi.org/10.1021/ic200073v
30.
30. U. J. Lorenz, J. Lemaire, P. Maitre, M. E. Crestoni, S. Fomarini, and O. Dopfer, Int. J. Mass Spectrom. 267, 43 (2007).
http://dx.doi.org/10.1016/j.ijms.2007.02.017
31.
31. B. Chiavarino, M. E. Crestoni, S. Fornarini, S. Taioli, I. Mancini, and P. Tosi, J. Chem. Phys. 137, 024307 (2012).
http://dx.doi.org/10.1063/1.4732583
32.
32. B. Chiavarino, M. E. Crestoni, S. Fornarini, D. Scuderi, and J.-Y. Salpin, J. Am. Chem. Soc. 135, 1445 (2013).
http://dx.doi.org/10.1021/ja309857d
33.
33. M. Savoca, M. A. R. George, J. Langer, and O. Dopfer, Phys. Chem. Chem. Phys. 15, 2774 (2013).
http://dx.doi.org/10.1039/c2cp43773b
34.
34. M. Savoca, J. Langer, and O. Dopfer, Angew. Chem. Int. Ed. 52, 1568 (2013).
http://dx.doi.org/10.1002/anie.201208958
35.
35. B. Chiavarino, M. E. Crestoni, and S. Fornarini, Chem. Commun. 2002, 1418.
http://dx.doi.org/10.1039/b203587c
36.
36. H.-U. Siehl, S. Brixner, C. Coletti, N. Re, B. Chiavarino, M. E. Crestoni, A. De Petris, and S. Fornarini, Int. J. Mass Spectrom. 334, 58 (2013).
http://dx.doi.org/10.1016/j.ijms.2012.10.007
37.
37. J. Lemaire, P. Boissel, M. Heninger, G. Mauclaire, G. Bellec, H. Mestdagh, A. Simon, S. Le Caer, J. M. Ortega, F. Glotin, and P. Maitre, Phys. Rev. Lett. 89, 273002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.273002
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4818729 for experimental methods, Cartesian coordinates (Table IS), geometrical parameters of isomer 1 calculated at B3LYP/6-311++G(2df,2p) and at MP2/6-311++G(2df,2p) level of theory (Table IIS), experimental and calculated vibrational modes of isomer 1 (Table IIIS); geometrical parameters (Table IVS); zero point energies (Table VS), and experimental IRMPD spectrum and computed IR spectra (isomer 1-5) (Figure 1S). [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/7/10.1063/1.4818729
Loading
/content/aip/journal/jcp/139/7/10.1063/1.4818729
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/7/10.1063/1.4818729
2013-08-16
2014-08-28

Abstract

β-trimethylsilyl-2-propyl cation has been formed by the gas phase protonation of allyl-trimethylsilane and characterized by infrared multiple photon dissociation spectroscopy. The experimental C-C stretching feature at 1586 cm, remarkably blue-shifted with respect to a C−C single bond stretching mode, is indicative of high double bond character, a signature of β-stabilizing effect due to hyperconjugation of the trimethylsilyl group in the β-position with respect to the positively charged carbon. Density functional theory calculations at the B3LYP/6-311++G(2df,2p) level yield the optimized geometries and IR spectra for candidate isomeric cations and for neutral and charged reference species.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/7/1.4818729.html;jsessionid=1rescs4rd8my4.x-aip-live-02?itemId=/content/aip/journal/jcp/139/7/10.1063/1.4818729&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Infrared spectroscopy of protonated allyl-trimethylsilane: Evidence for the β-silyl effect
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/7/10.1063/1.4818729
10.1063/1.4818729
SEARCH_EXPAND_ITEM