1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Exploring surface photoreaction dynamics using pixel imaging mass spectrometry (PImMS)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/139/8/10.1063/1.4818997
1.
1. D. W. Chandler and P. L. Houston, J. Chem. Phys. 87(2), 14451447 (1987).
http://dx.doi.org/10.1063/1.453276
2.
2. A. Eppink and D. H. Parker, Rev. Sci. Instrum. 68(9), 34773484 (1997).
http://dx.doi.org/10.1063/1.1148310
3.
3. M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, O. P. J. Vieuxmaire, R. L. Toomes, T. N. Kitsopoulos, I. A. Garcia, D. A. Chestakov, S. M. Wu, and D. H. Parker, Phys. Chem. Chem. Phys. 8(1), 2653 (2006).
http://dx.doi.org/10.1039/b509304j
4.
4. Y. Y. Ji, S. P. K. Koehler, D. J. Auerbach, and A. M. Wodtke, J. Vac. Sci. Technol. A 28(4), 807813 (2010).
http://dx.doi.org/10.1116/1.3327929
5.
5. M. Menges, B. Baumeister, K. Alshamery, H. J. Freund, C. Fischer, and P. Andresen, Surf. Sci. 316(1–2), 103111 (1994).
http://dx.doi.org/10.1016/0039-6028(94)91132-0
6.
6. M. Wilde, K. Fukutani, Y. Murata, M. Kampling, K. Al-Shamery, and H. J. Freund, Surf. Sci. 427–428, 2733 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00227-7
7.
7. A. R. Burns, E. B. Stechel, and D. R. Jennison, Surf. Sci. 280(3), 359368 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90688-G
8.
8. A. R. Burns, Surf. Sci. 280(3), 349358 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90687-F
9.
9. D. Corr and D. C. Jacobs, Rev. Sci. Instrum. 63(3), 19691972 (1992).
http://dx.doi.org/10.1063/1.1143313
10.
10. P. H. Kobrin, G. A. Schick, J. P. Baxter, and N. Winograd, Rev. Sci. Instrum. 57(7), 13541362 (1986).
http://dx.doi.org/10.1063/1.1138600
11.
11. S. P. K. Koehler, Y. Y. Ji, D. J. Auerbach, and A. M. Wodtke, Phys. Chem. Chem. Phys. 11(35), 75407544 (2009).
http://dx.doi.org/10.1039/b909579a
12.
12. M. Reid and S. P. K. Koehler, Rev. Sci. Instrum. 84(4), 044101 (2013).
http://dx.doi.org/10.1063/1.4798646
13.
13. J. R. Roscioli, D. J. Bell, D. J. Nelson, and D. J. Nesbitt, Phys. Chem. Chem. Phys. 14(12), 40704080 (2012).
http://dx.doi.org/10.1039/c1cp22938a
14.
14. J. R. Roscioli and D. J. Nesbitt, Faraday Discuss. 150, 471479 (2011).
http://dx.doi.org/10.1039/c0fd00023j
15.
15. A. Nomerotski, M. Brouard, E. Campbell, A. Clark, J. Crooks, J. Fopma, J. J. John, A. J. Johnsen, C. Slater, R. Turchetta, C. Vallance, E. Wilman, and W. H. Yuen, J. Instrum. 5, C07007 (2010).
http://dx.doi.org/10.1088/1748-0221/5/07/C07007
16.
16. J. J. John, M. Brouard, A. Clark, J. Crooks, E. Halford, L. Hill, J. W. L. Lee, A. Nomerotski, R. Pisarczyk, I. Sedgwick, C. S. Slater, R. Turchetta, C. Vallance, E. Wilman, B. Winter, and W. H. Yuen, J. Instrum. 7, C08001 (2012).
http://dx.doi.org/10.1088/1748-0221/7/08/C08001
17.
17. M. Brouard, E. K. Campbell, A. J. Johnsen, C. Vallance, W. H. Yuen, and A. Nomerotski, Rev. Sci. Instrum. 79(12), 123115123118 (2008).
http://dx.doi.org/10.1063/1.3036978
18.
18. I. Sedgwick, A. Clark, J. Crooks, R. Turchetta, L. Hill, J. J. John, A. Nomerotski, R. Pisarczyk, M. Brouard, S. H. Gardiner, E. Halford, J. Lee, M. L. Lipciuc, C. Slater, C. Vallance, E. S. Wilman, B. Winter, and W. H. Yuen, “PImMS: A self-triggered, 25ns resolution monolithic CMOS sensor for Time-of-Flight and Imaging Mass Spectrometry,” New Circuits and Systems Conference (NEWCAS), 2012 IEEE 10th International, 497500 (2012).
http://dx.doi.org/10.1109/NEWCAS.2012.6329065
19.
19. A. T. Clark, J. P. Crooks, I. Sedgwick, R. Turchetta, J. W. L. Lee, J. J. John, E. S. Wilman, L. Hill, E. Halford, C. S. Slater, B. Winter, W. H. Yuen, S. H. Gardiner, M. L. Lipciuc, M. Brouard, A. Nomerotski, and C. Vallance, J. Phys. Chem. A 116(45), 1089710903 (2012).
http://dx.doi.org/10.1021/jp309860t
20.
20. M. Brouard, E. Halford, A. Lauer, C. S. Slater, B. Winter, W. H. Yuen, J. J. John, L. Hill, A. Nomerotski, A. Clark, J. Crooks, I. Sedgwick, R. Turchetta, J. W. L. Lee, C. Vallance, and E. Wilman, Rev. Sci. Instrum. 83(11), 114101 (2012).
http://dx.doi.org/10.1063/1.4766938
21.
21. M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341357 (1993).
http://dx.doi.org/10.1021/cr00017a016
22.
22. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95(1), 6996 (1995).
http://dx.doi.org/10.1021/cr00033a004
23.
23. A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63(12), 515582 (2008).
http://dx.doi.org/10.1016/j.surfrep.2008.10.001
24.
24. M. A. Henderson, Surf. Sci. 602(20), 31883193 (2008).
http://dx.doi.org/10.1016/j.susc.2007.06.079
25.
25. D. P. Wilson, D. P. Sporleder, and M. G. White, J. Phys. Chem. C 117(18), 92909300 (2013).
http://dx.doi.org/10.1021/jp401838r
26.
26. L. Fleck, B. Niu, R. J. Beuhler, and M. G. White, in Laser Techniques for Surface Science II, edited by J. M. Hicks, W. Ho, and H.-L. Dai, Proc. SPIE 2547, 298309 (1995).
27.
27. R. G. Tonkyn and M. G. White, Rev. Sci. Instrum. 60(7), 12451251 (1989).
http://dx.doi.org/10.1063/1.1140298
28.
28. M. Li, W. Hebenstreit, U. Diebold, A. M. Tyryshkin, M. K. Bowman, G. G. Dunham, and M. A. Henderson, J. Phys. Chem. B 104(20), 49444950 (2000).
http://dx.doi.org/10.1021/jp9943272
29.
29. R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, Rev. Sci. Instrum. 58(9), 16161620 (1987).
http://dx.doi.org/10.1063/1.1139356
30.
30. B. L. FitzPatrick, M. Maienschein-Cline, L. J. Butler, S. H. Lee, and J. J. Lin, J. Phys. Chem. A 111(49), 1241712422 (2007).
http://dx.doi.org/10.1021/jp073828h
31.
31. D. P. Wilson, D. Sporleder, and M. G. White, Phys. Chem. Chem. Phys. 14(39), 1363013637 (2012).
http://dx.doi.org/10.1039/c2cp42628e
32.
32. V. P. Holbert, S. J. Garrett, P. C. Stair, and E. Weitz, Surf. Sci. 346(1–3), 189205 (1996).
http://dx.doi.org/10.1016/0039-6028(95)00899-3
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4818997 for additional details regarding the imaging TOF-MS and the image analysis. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/8/10.1063/1.4818997
Loading
/content/aip/journal/jcp/139/8/10.1063/1.4818997
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/139/8/10.1063/1.4818997
2013-08-26
2014-07-23

Abstract

A new technique for studying surface photochemistry has been developed using an ion imaging time-of-flight mass spectrometer in conjunction with a fast camera capable of multimass imaging. This technique, called pixel imaging mass spectrometry (PImMS), has been applied to the study of butanone photooxidation on TiO(110). In agreement with previous studies of this system, it was observed that the main photooxidation pathway for butanone involves ejection of an ethyl radical into vacuum which, as confirmed by our imaging experiment, undergoes fragmentation after ionization in the mass spectrometer. This proof-of-principle experiment illustrates the usefulness and applicability of PImMS technology to problems of interest within the surface science community.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/139/8/1.4818997.html;jsessionid=1ka7c4vygamrf.x-aip-live-06?itemId=/content/aip/journal/jcp/139/8/10.1063/1.4818997&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Exploring surface photoreaction dynamics using pixel imaging mass spectrometry (PImMS)
http://aip.metastore.ingenta.com/content/aip/journal/jcp/139/8/10.1063/1.4818997
10.1063/1.4818997
SEARCH_EXPAND_ITEM